
Find the value of x, if \[{9^{1 + \log x}} - {3^{1 + \log x}} - 210 = 0\], the base is \[3\].
Answer
483.9k+ views
Hint: We have to find the value of \[x\]. For this, first, we need to simplify the given equation.
To solve the equation, we will apply a few formulae as follows:
\[{a^{m + n}} = {a^m}.{a^n}\]
\[{a^{{{\log }_a}x}} = x\]
We know that, if the multiplication of two terms is zero, the value of each term is individually zero.
Complete step by step answer:
It is given that, \[{9^{1 + \log x}} - {3^{1 + \log x}} - 210 = 0\] the base is \[3\].
We have to find the value of \[x\].
Here, we have,
\[ \Rightarrow {9^{1 + \log x}} - {3^{1 + \log x}} - 210 = 0\]
We know that,
\[ \Rightarrow {a^{m + n}} = {a^m}.{a^n}\]
Applying the formula, we get,
\[ \Rightarrow {9.9^{\log x}} - {3.3^{\log x}} - 210 = 0\]
Simplifying we get,
\[ \Rightarrow {9.3^{2\log x}} - {3.3^{\log x}} - 210 = 0\]
Since, the base is \[3\]. We have, \[{3^{\log x}} = x\]
So, applying the formula we get,
\[ \Rightarrow 9{x^2} - 3x - 210 = 0\]
Dividing each term by \[3\] we get,
\[ \Rightarrow 3{x^2} - x - 70 = 0\]
Now we will split the middle term as follows,
\[ \Rightarrow 3{x^2} - 15x + 14x - 70 = 0\]
Simplifying we get,
\[ \Rightarrow 3x(x - 5) + 14(x - 5) = 0\]
Simplifying again we get,
\[ \Rightarrow (x - 5)(3x + 14) = 0\]
We know that, if the multiplication of two terms is zero, the value of each term is individually zero.
So, we have,
\[ \Rightarrow (x - 5) = 0\] gives \[x = 5\] and
\[ \Rightarrow (3x + 14) = 0\] gives \[x = \dfrac{{ - 14}}{3}\]
We only take positive value for $x$ as the logarithm of negative numbers is not defined.
$\therefore $ The value of \[x\] is \[5\].
Note:
In Quadratic Factorization using Splitting of Middle Term which is \[x\] term is the sum of two factors and product equal to the last term.
Logarithm, the exponent or power to which a base must be raised to yield a given number. Expressed mathematically, \[x\] is the logarithm of \[n\] to the base \[b\] if \[{b^x} = n\], in which case one writes \[x = {\log _b}n\].
When rewriting an exponential equation in log form or a log equation in exponential form, it is helpful to remember that the base of the logarithm is the same as the base of the exponent.
To solve the equation, we will apply a few formulae as follows:
\[{a^{m + n}} = {a^m}.{a^n}\]
\[{a^{{{\log }_a}x}} = x\]
We know that, if the multiplication of two terms is zero, the value of each term is individually zero.
Complete step by step answer:
It is given that, \[{9^{1 + \log x}} - {3^{1 + \log x}} - 210 = 0\] the base is \[3\].
We have to find the value of \[x\].
Here, we have,
\[ \Rightarrow {9^{1 + \log x}} - {3^{1 + \log x}} - 210 = 0\]
We know that,
\[ \Rightarrow {a^{m + n}} = {a^m}.{a^n}\]
Applying the formula, we get,
\[ \Rightarrow {9.9^{\log x}} - {3.3^{\log x}} - 210 = 0\]
Simplifying we get,
\[ \Rightarrow {9.3^{2\log x}} - {3.3^{\log x}} - 210 = 0\]
Since, the base is \[3\]. We have, \[{3^{\log x}} = x\]
So, applying the formula we get,
\[ \Rightarrow 9{x^2} - 3x - 210 = 0\]
Dividing each term by \[3\] we get,
\[ \Rightarrow 3{x^2} - x - 70 = 0\]
Now we will split the middle term as follows,
\[ \Rightarrow 3{x^2} - 15x + 14x - 70 = 0\]
Simplifying we get,
\[ \Rightarrow 3x(x - 5) + 14(x - 5) = 0\]
Simplifying again we get,
\[ \Rightarrow (x - 5)(3x + 14) = 0\]
We know that, if the multiplication of two terms is zero, the value of each term is individually zero.
So, we have,
\[ \Rightarrow (x - 5) = 0\] gives \[x = 5\] and
\[ \Rightarrow (3x + 14) = 0\] gives \[x = \dfrac{{ - 14}}{3}\]
We only take positive value for $x$ as the logarithm of negative numbers is not defined.
$\therefore $ The value of \[x\] is \[5\].
Note:
In Quadratic Factorization using Splitting of Middle Term which is \[x\] term is the sum of two factors and product equal to the last term.
Logarithm, the exponent or power to which a base must be raised to yield a given number. Expressed mathematically, \[x\] is the logarithm of \[n\] to the base \[b\] if \[{b^x} = n\], in which case one writes \[x = {\log _b}n\].
When rewriting an exponential equation in log form or a log equation in exponential form, it is helpful to remember that the base of the logarithm is the same as the base of the exponent.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
