Answer
Verified
496.2k+ views
Hint: Solve the expression by using the laws of Logarithm. Take LHS and RHS of the expression separately. First the values by using the addition and exponential laws of logarithm. Simplify the final expression and find the value of x.
Complete step-by-step answer:
Let us consider that \[\log \left( x+5 \right)\] and \[\log \left( x-5 \right)\] are greater than zero.
i.e. \[\log \left( x+5 \right)>0\] and \[\log \left( x-5 \right)>0\].
We have been given the expression, \[\log \left( x+5 \right)+\log \left( x-5 \right)=4\log 2+2\log 3\].
By using the laws of logarithm we can solve this expression.
\[\log A+\log B=\log AB-(1)\]
This expression tells us how to add two logarithms. Adding \[\log A\] and \[\log B\] results in the logarithm of the product A and B, that is \[\log AB\].
\[\log {{A}^{n}}=n\log A-(2)\]
In this case the logarithm can be written in exponential form.
Now consider the RHS of the expression,
\[\log \left( x+5 \right)+\log \left( x-5 \right)\]
From equation (1) we can say that \[\log A+\log B=\log AB\].
Comparing both the expression, we get value of
A = x+5 and B = x- 5
Now substituting value of A and B in equation (1),
\[\log \left( x+5 \right)+\log \left( x-5 \right)=\log \left( \left( x+5 \right)\left( x-5 \right) \right)-(3)\]
Now let us consider the LHS of the expression \[\left( 4\log 2+2\log 3 \right)\].
From Equation (2), we know, \[x\log A=\log {{A}^{x}}\].
\[\therefore 4\log 2\] can be written as log\[{{2}^{4}}\].
Similarly, \[2\log 3\] can be written as \[\log {{3}^{2}}\].
Now, \[\left( 4\log 2+2\log 3 \right)\] becomes \[\left( \log {{2}^{4}}+\log {{3}^{2}} \right)\].
From equation (1) we know that \[\log A+\log B=\log AB\]. Comparing both expressions we get \[A={{2}^{4}}\] and \[B={{3}^{2}}\]
Substituting, the values of A and B we get,
\[\log {{2}^{4}}+\log {{3}^{2}}=\log \left( {{2}^{4}}\times {{3}^{2}} \right)-(4)\]
Now let us equate the RHS and LHS of the expression.
We get,
\[\log \left( x+5 \right)\left( x-5 \right)=\log \left( {{2}^{4}}\times {{3}^{2}} \right)\]
Let us remove the log from both sides.
\[\Rightarrow \left( x+5 \right)\left( x-5 \right)={{2}^{4}}\times {{3}^{2}}\]
Simplifying and opening the brackets,
\[\begin{align}
& \left( x+5 \right)\left( x-5 \right)={{x}^{2}}-5x+5x-25={{x}^{2}}-25 \\
& {{2}^{4}}=2\times 2\times 2\times 2=16 \\
& {{3}^{2}}=3\times 3=9 \\
& \Rightarrow {{x}^{2}}-25=16\times 9 \\
& {{x}^{2}}=144+25=169 \\
& \therefore {{x}^{2}}=169 \\
& x=\sqrt{169}=13 \\
\end{align}\]
\[\therefore \] Value of \[x=\pm 13\]
Since, we can’t consider x = -13 due to the fact that the argument of any logarithm can’t be negative.
\[\therefore \] Option (d) is the correct answer.
Note: The given laws of logarithms are first law and third laws of the logarithm.
The second law is \[\log A-\log B=\log \dfrac{A}{B}\] (subtraction of logarithms).
And the fourth law is \[\log 1=0,{{\log }_{m}}m=1\].
The logarithm of 1 to any base is always zero, and the logarithm of a number to the same bare is always 1.
\[{{\log }_{10}}10=1\]and \[{{\log }_{e}}e=1\].
The law of logarithm applies to the logarithm of any base. But the same bare should be used throughout the calculation.
Complete step-by-step answer:
Let us consider that \[\log \left( x+5 \right)\] and \[\log \left( x-5 \right)\] are greater than zero.
i.e. \[\log \left( x+5 \right)>0\] and \[\log \left( x-5 \right)>0\].
We have been given the expression, \[\log \left( x+5 \right)+\log \left( x-5 \right)=4\log 2+2\log 3\].
By using the laws of logarithm we can solve this expression.
\[\log A+\log B=\log AB-(1)\]
This expression tells us how to add two logarithms. Adding \[\log A\] and \[\log B\] results in the logarithm of the product A and B, that is \[\log AB\].
\[\log {{A}^{n}}=n\log A-(2)\]
In this case the logarithm can be written in exponential form.
Now consider the RHS of the expression,
\[\log \left( x+5 \right)+\log \left( x-5 \right)\]
From equation (1) we can say that \[\log A+\log B=\log AB\].
Comparing both the expression, we get value of
A = x+5 and B = x- 5
Now substituting value of A and B in equation (1),
\[\log \left( x+5 \right)+\log \left( x-5 \right)=\log \left( \left( x+5 \right)\left( x-5 \right) \right)-(3)\]
Now let us consider the LHS of the expression \[\left( 4\log 2+2\log 3 \right)\].
From Equation (2), we know, \[x\log A=\log {{A}^{x}}\].
\[\therefore 4\log 2\] can be written as log\[{{2}^{4}}\].
Similarly, \[2\log 3\] can be written as \[\log {{3}^{2}}\].
Now, \[\left( 4\log 2+2\log 3 \right)\] becomes \[\left( \log {{2}^{4}}+\log {{3}^{2}} \right)\].
From equation (1) we know that \[\log A+\log B=\log AB\]. Comparing both expressions we get \[A={{2}^{4}}\] and \[B={{3}^{2}}\]
Substituting, the values of A and B we get,
\[\log {{2}^{4}}+\log {{3}^{2}}=\log \left( {{2}^{4}}\times {{3}^{2}} \right)-(4)\]
Now let us equate the RHS and LHS of the expression.
We get,
\[\log \left( x+5 \right)\left( x-5 \right)=\log \left( {{2}^{4}}\times {{3}^{2}} \right)\]
Let us remove the log from both sides.
\[\Rightarrow \left( x+5 \right)\left( x-5 \right)={{2}^{4}}\times {{3}^{2}}\]
Simplifying and opening the brackets,
\[\begin{align}
& \left( x+5 \right)\left( x-5 \right)={{x}^{2}}-5x+5x-25={{x}^{2}}-25 \\
& {{2}^{4}}=2\times 2\times 2\times 2=16 \\
& {{3}^{2}}=3\times 3=9 \\
& \Rightarrow {{x}^{2}}-25=16\times 9 \\
& {{x}^{2}}=144+25=169 \\
& \therefore {{x}^{2}}=169 \\
& x=\sqrt{169}=13 \\
\end{align}\]
\[\therefore \] Value of \[x=\pm 13\]
Since, we can’t consider x = -13 due to the fact that the argument of any logarithm can’t be negative.
\[\therefore \] Option (d) is the correct answer.
Note: The given laws of logarithms are first law and third laws of the logarithm.
The second law is \[\log A-\log B=\log \dfrac{A}{B}\] (subtraction of logarithms).
And the fourth law is \[\log 1=0,{{\log }_{m}}m=1\].
The logarithm of 1 to any base is always zero, and the logarithm of a number to the same bare is always 1.
\[{{\log }_{10}}10=1\]and \[{{\log }_{e}}e=1\].
The law of logarithm applies to the logarithm of any base. But the same bare should be used throughout the calculation.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE