How to find the value of \[x\] where \[0 \le x \le {360^ \circ }\] for \[\sec x = - 1.7172\]?
Answer
Verified
442.8k+ views
Hint:
Here we will find the value of \[x\] by using trigonometric function identity. First, we will convert the secant function into a cosine function by using the reciprocal trigonometric identity. Then we will find the value of \[\cos x\]. Finally, we will take cosine inverse to get the required answer.
Complete step by step solution:
We have to find the value of \[x\] for \[\sec x = - 1.7172\].
We know that secant is also defined as reciprocal of cosine function i.e. \[\sec x = \dfrac{1}{{\cos x}}\].
Therefore, using this identity, we can write
\[\sec x = \dfrac{1}{{\cos x}} = - 1.7172\]
On cross multiplying the terms, we get
\[ \Rightarrow \cos x = \dfrac{1}{{ - 1.7172}}\]
Dividing the terms, we get
\[ \Rightarrow \cos x = - 0.5823\]
Now, taking the inverse cosine function on both the sides, we get
\[ \Rightarrow x = {\cos ^{ - 1}}\left( { - 0.5823} \right)\]
Using the calculator we get,
\[x = {125.61^ \circ }\]
So, we get the value of \[x\] as \[{125.61^ \circ }\].
Additional information:
The Reciprocal Identity of trigonometric functions states that there are three functions which can be defined as the reciprocal of the other three functions. For example, secant can be defined as reciprocal of cosine, cosecant can be defined as reciprocal of sine and cotangent can be defined as reciprocal of the tangent.
Note:
Trigonometry is that branch of mathematics that deals with specific functions of angles and also their application in calculations and simplification. The commonly used six types of trigonometry functions are defined as sine, cosine, tangent, cotangent, secant and cosecant. Identities are those equations which are true for every variable. The trigonometric functions are those real functions that relate the angle to the ratio of two sides of a right-angled triangle.
Here we will find the value of \[x\] by using trigonometric function identity. First, we will convert the secant function into a cosine function by using the reciprocal trigonometric identity. Then we will find the value of \[\cos x\]. Finally, we will take cosine inverse to get the required answer.
Complete step by step solution:
We have to find the value of \[x\] for \[\sec x = - 1.7172\].
We know that secant is also defined as reciprocal of cosine function i.e. \[\sec x = \dfrac{1}{{\cos x}}\].
Therefore, using this identity, we can write
\[\sec x = \dfrac{1}{{\cos x}} = - 1.7172\]
On cross multiplying the terms, we get
\[ \Rightarrow \cos x = \dfrac{1}{{ - 1.7172}}\]
Dividing the terms, we get
\[ \Rightarrow \cos x = - 0.5823\]
Now, taking the inverse cosine function on both the sides, we get
\[ \Rightarrow x = {\cos ^{ - 1}}\left( { - 0.5823} \right)\]
Using the calculator we get,
\[x = {125.61^ \circ }\]
So, we get the value of \[x\] as \[{125.61^ \circ }\].
Additional information:
The Reciprocal Identity of trigonometric functions states that there are three functions which can be defined as the reciprocal of the other three functions. For example, secant can be defined as reciprocal of cosine, cosecant can be defined as reciprocal of sine and cotangent can be defined as reciprocal of the tangent.
Note:
Trigonometry is that branch of mathematics that deals with specific functions of angles and also their application in calculations and simplification. The commonly used six types of trigonometry functions are defined as sine, cosine, tangent, cotangent, secant and cosecant. Identities are those equations which are true for every variable. The trigonometric functions are those real functions that relate the angle to the ratio of two sides of a right-angled triangle.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE