Answer
Verified
462.6k+ views
Hint: In this question we can also write \[255 = 120 + 135\], $165 = 120 + 45$. Then we will use $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ and $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$after substituting the respective values and simplify to get the answer.
Complete step-by-step answer:
$\cos {255^ \circ } + \sin {165^ \circ } = $
We can also write
$ \Rightarrow \cos \left( {120 + 135} \right) + \sin \left( {120 + 45} \right)$
We know that $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ and $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ so the equation will become
\[ \Rightarrow \left( {\cos {{120}^ \circ }\cos {{135}^ \circ } - \sin {{120}^ \circ }\sin {{135}^ \circ }} \right) + \left( {\sin {{120}^ \circ }\cos {{45}^ \circ } + \cos {{120}^ \circ }\sin {{45}^ \circ }} \right)\]
Substituting the respective values, we get
$
\Rightarrow \left( {\dfrac{{ - 1}}{2} \times \dfrac{{ - 1}}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} + \dfrac{{ - 1}}{2} \times \dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow 0 \\
$
So, $\cos {255^ \circ } + \sin {165^ \circ } = $0
Answer is (A)
Note: Trigonometric formula used are $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ and $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$. Values of some used here must be have to memorized
$
\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} = \cos {45^ \circ } \\
\sin {135^ \circ } = \dfrac{1}{{\sqrt 2 }} \\
\cos {135^ \circ } = \dfrac{{ - 1}}{{\sqrt 2 }} \\
\sin {120^ \circ } = \dfrac{{\sqrt 3 }}{2} \\
\cos {120^ \circ } = \dfrac{{ - 1}}{2} \\
$
Complete step-by-step answer:
$\cos {255^ \circ } + \sin {165^ \circ } = $
We can also write
$ \Rightarrow \cos \left( {120 + 135} \right) + \sin \left( {120 + 45} \right)$
We know that $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ and $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ so the equation will become
\[ \Rightarrow \left( {\cos {{120}^ \circ }\cos {{135}^ \circ } - \sin {{120}^ \circ }\sin {{135}^ \circ }} \right) + \left( {\sin {{120}^ \circ }\cos {{45}^ \circ } + \cos {{120}^ \circ }\sin {{45}^ \circ }} \right)\]
Substituting the respective values, we get
$
\Rightarrow \left( {\dfrac{{ - 1}}{2} \times \dfrac{{ - 1}}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} + \dfrac{{ - 1}}{2} \times \dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow 0 \\
$
So, $\cos {255^ \circ } + \sin {165^ \circ } = $0
Answer is (A)
Note: Trigonometric formula used are $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ and $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$. Values of some used here must be have to memorized
$
\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} = \cos {45^ \circ } \\
\sin {135^ \circ } = \dfrac{1}{{\sqrt 2 }} \\
\cos {135^ \circ } = \dfrac{{ - 1}}{{\sqrt 2 }} \\
\sin {120^ \circ } = \dfrac{{\sqrt 3 }}{2} \\
\cos {120^ \circ } = \dfrac{{ - 1}}{2} \\
$
Recently Updated Pages
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
ABC is a right angled triangular plate of uniform thickness class 11 phy sec 1 JEE_Main
The linear velocity perpendicular to the radius vector class 11 physics JEE_Main
The normality of 03 M phosphorus acid H3PO3 is class 11 chemistry NEET_UG
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE