
Find The values of $\cos {255^ \circ } + \sin {165^ \circ } = $
A.0
B.$\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 }}$
C.$\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
D.$\dfrac{{\sqrt 2 + 1}}{{\sqrt 2 }}$
Answer
582.9k+ views
Hint: In this question we can also write \[255 = 120 + 135\], $165 = 120 + 45$. Then we will use $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ and $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$after substituting the respective values and simplify to get the answer.
Complete step-by-step answer:
$\cos {255^ \circ } + \sin {165^ \circ } = $
We can also write
$ \Rightarrow \cos \left( {120 + 135} \right) + \sin \left( {120 + 45} \right)$
We know that $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ and $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ so the equation will become
\[ \Rightarrow \left( {\cos {{120}^ \circ }\cos {{135}^ \circ } - \sin {{120}^ \circ }\sin {{135}^ \circ }} \right) + \left( {\sin {{120}^ \circ }\cos {{45}^ \circ } + \cos {{120}^ \circ }\sin {{45}^ \circ }} \right)\]
Substituting the respective values, we get
$
\Rightarrow \left( {\dfrac{{ - 1}}{2} \times \dfrac{{ - 1}}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} + \dfrac{{ - 1}}{2} \times \dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow 0 \\
$
So, $\cos {255^ \circ } + \sin {165^ \circ } = $0
Answer is (A)
Note: Trigonometric formula used are $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ and $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$. Values of some used here must be have to memorized
$
\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} = \cos {45^ \circ } \\
\sin {135^ \circ } = \dfrac{1}{{\sqrt 2 }} \\
\cos {135^ \circ } = \dfrac{{ - 1}}{{\sqrt 2 }} \\
\sin {120^ \circ } = \dfrac{{\sqrt 3 }}{2} \\
\cos {120^ \circ } = \dfrac{{ - 1}}{2} \\
$
Complete step-by-step answer:
$\cos {255^ \circ } + \sin {165^ \circ } = $
We can also write
$ \Rightarrow \cos \left( {120 + 135} \right) + \sin \left( {120 + 45} \right)$
We know that $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ and $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ so the equation will become
\[ \Rightarrow \left( {\cos {{120}^ \circ }\cos {{135}^ \circ } - \sin {{120}^ \circ }\sin {{135}^ \circ }} \right) + \left( {\sin {{120}^ \circ }\cos {{45}^ \circ } + \cos {{120}^ \circ }\sin {{45}^ \circ }} \right)\]
Substituting the respective values, we get
$
\Rightarrow \left( {\dfrac{{ - 1}}{2} \times \dfrac{{ - 1}}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} + \dfrac{{ - 1}}{2} \times \dfrac{1}{{\sqrt 2 }}} \right) \\
\Rightarrow 0 \\
$
So, $\cos {255^ \circ } + \sin {165^ \circ } = $0
Answer is (A)
Note: Trigonometric formula used are $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ and $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$. Values of some used here must be have to memorized
$
\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} = \cos {45^ \circ } \\
\sin {135^ \circ } = \dfrac{1}{{\sqrt 2 }} \\
\cos {135^ \circ } = \dfrac{{ - 1}}{{\sqrt 2 }} \\
\sin {120^ \circ } = \dfrac{{\sqrt 3 }}{2} \\
\cos {120^ \circ } = \dfrac{{ - 1}}{2} \\
$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

