
What is the flux through a cube of side ‘a’ if a point charge q is at one of its corners ?
A) \[\dfrac{q}{{{\varepsilon _\circ }}}\]
B) \[\dfrac{q}{{2{\varepsilon _\circ }}}\]
C) \[\dfrac{{2q}}{{{\varepsilon _\circ }}}\]
D) \[\dfrac{q}{{8{\varepsilon _\circ }}}\]
Answer
421.8k+ views
Hint: Electric flux is the rate of flow of the electric field through a given area. According to gauss law, the electric flux through a closed surface is equal to \[\dfrac{q}{{{\varepsilon _\circ }}}\], if q is the charge enclosed in it.
In case if a charge is placed at one of the corners of the cube then the amount of charge enclosed in it is eighth part of the charge so the flux is also the eighth part of \[\dfrac{q}{{{\varepsilon _\circ }}}\].
Formula used:
Gauss law: According to gauss law :- If a charge “q ” is enclosed in a closed surface then the net flux emerging out of the closed surface is \[\dfrac{q}{{{\varepsilon _\circ }}}\]. Gauss law is only applicable for closed bodies.
Complete step by step solution:
According to gauss law, the electric flux through a closed surface is equal to \[\dfrac{q}{{{\varepsilon _\circ }}}\], if q is the charge enclosed in it.

If the charge ‘q ’is placed at one of the corners of the cube, it will be divided into 8 such cubes. Therefore, electric flux through the one cube is the eighth part of \[\dfrac{q}{{{\varepsilon _\circ }}}\].
So electric flux (\[\varphi \]) is equal to \[\dfrac{q}{{8{\varepsilon _\circ }}}\].
Hence option (D) is the correct answer.
Gauss law is one of the four Maxwell’s equations which form the basis of classical electrodynamics.
Note: Electric flux has SI units of volt metres ( V m).
Electric flux is the rate of flow of electric field through a given area. Electric flux is proportional to the number of electric field lines going through a virtual surface. Gauss law can be used to derive the coulomb’s law and vice-versa.
In case if a charge is placed at one of the corners of the cube then the amount of charge enclosed in it is eighth part of the charge so the flux is also the eighth part of \[\dfrac{q}{{{\varepsilon _\circ }}}\].
Formula used:
Gauss law: According to gauss law :- If a charge “q ” is enclosed in a closed surface then the net flux emerging out of the closed surface is \[\dfrac{q}{{{\varepsilon _\circ }}}\]. Gauss law is only applicable for closed bodies.
Complete step by step solution:
According to gauss law, the electric flux through a closed surface is equal to \[\dfrac{q}{{{\varepsilon _\circ }}}\], if q is the charge enclosed in it.

If the charge ‘q ’is placed at one of the corners of the cube, it will be divided into 8 such cubes. Therefore, electric flux through the one cube is the eighth part of \[\dfrac{q}{{{\varepsilon _\circ }}}\].
So electric flux (\[\varphi \]) is equal to \[\dfrac{q}{{8{\varepsilon _\circ }}}\].
Hence option (D) is the correct answer.
Gauss law is one of the four Maxwell’s equations which form the basis of classical electrodynamics.
Note: Electric flux has SI units of volt metres ( V m).
Electric flux is the rate of flow of electric field through a given area. Electric flux is proportional to the number of electric field lines going through a virtual surface. Gauss law can be used to derive the coulomb’s law and vice-versa.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Diffraction of Light - Young’s Single Slit Experiment
