Answer
Verified
472.2k+ views
Hint: In this particular question use the concept that cosec x = (1/sin x), then expand the summation and use the property that $\dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\cot x - \cot \left( {x + a} \right)} \right]$, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given expression
$\sum\limits_{m = 1}^6 {{\text{cosec}}\left( {\theta + \dfrac{{\left( {m - 1} \right)\pi }}{4}} \right){\text{cosec}}\left( {\theta + \dfrac{{m\pi }}{4}} \right)} = 4\sqrt 2 $, for $0 < \theta < \dfrac{\pi }{2}$
Now we have to find out the values of $\theta $
As we know that cosec x = (1/sin x) so use this property in the above expression we have,
$ \Rightarrow \sum\limits_{m = 1}^6 {\dfrac{1}{{\sin \left( {\theta + \dfrac{{\left( {m - 1} \right)\pi }}{4}} \right)\sin \left( {\theta + \dfrac{{m\pi }}{4}} \right)}}} = 4\sqrt 2 $
Now expand the summation we have,
$ \Rightarrow \dfrac{1}{{\sin \theta \sin \left( {\theta + \dfrac{\pi }{4}} \right)}} + \dfrac{1}{{\sin \left( {\theta + \dfrac{\pi }{4}} \right)\sin \left( {\theta + \dfrac{{2\pi }}{4}} \right)}} + ........... + \dfrac{1}{{\sin \left( {\theta + \dfrac{{5\pi }}{4}} \right)\sin \left( {\theta + \dfrac{{6\pi }}{4}} \right)}} = 4\sqrt 2 $..... (1)
Now, simplify the above expression using the property which is given as,
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\dfrac{{\sin \left( {x + a - x} \right)}}{{\sin x\sin \left( {x + a} \right)}}} \right]$
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\dfrac{{\sin \left( {x + a} \right)\cos x - \cos \left( {x + a} \right)\sin x}}{{\sin x\sin \left( {x + a} \right)}}} \right]$, $\left[ {\because \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$
Now simplify we have,
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\dfrac{{\cos x}}{{\sin x}} - \dfrac{{\cos \left( {x + a} \right)}}{{\sin \left( {x + a} \right)}}} \right]$
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\cot x - \cot \left( {x + a} \right)} \right]$, where cot x = (cos x/sin x)
So use this property in equation (1), where a = $\dfrac{\pi }{4}$ so we have,
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\theta + \dfrac{\pi }{4}} \right) + \cot \left( {\theta + \dfrac{\pi }{4}} \right) - \cot \left( {\theta + \dfrac{{2\pi }}{4}} \right) + ...... + \cot \left( {\theta + \dfrac{{5\pi }}{4}} \right) - \cot \left( {\theta + \dfrac{{6\pi }}{4}} \right)} \right] = 4\sqrt 2 $
So as we see that except first and last term all the terms are cancel out so we have,
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\theta + \dfrac{{6\pi }}{4}} \right)} \right] = 4\sqrt 2 $
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\theta + \dfrac{{3\pi }}{2}} \right)} \right] = 4\sqrt 2 $
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\pi + \left( {\theta + \dfrac{\pi }{2}} \right)} \right)} \right] = 4\sqrt 2 $
Now as we know that $\cot \left( {\pi + x} \right) = \cot x$, as cot is positive in the third quadrant.
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\dfrac{\pi }{2} + \theta } \right)} \right] = 4\sqrt 2 $
Now as we know that $\cot \left( {\dfrac{\pi }{2} + x} \right) = - \tan x,\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$ so use this property we have,
$ \Rightarrow \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}}\left[ {\cot \theta + \tan \theta } \right] = 4\sqrt 2 $
$ \Rightarrow \left[ {\cot \theta + \tan \theta } \right] = 4$
$ \Rightarrow \left[ {\dfrac{1}{{\tan \theta }} + \tan \theta } \right] = 4$
$ \Rightarrow {\tan ^2}\theta - 4\tan \theta + 1 = 0$
So this is a quadratic equation so apply quadratic formula we have,
$ \Rightarrow \tan \theta = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$. Where, a = 1, b = -4, c = 1.
So we have,
$ \Rightarrow \tan \theta = \dfrac{{4 \pm \sqrt {{4^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}} = \dfrac{{4 \pm \sqrt {12} }}{2} = 2 \pm \sqrt 3 $
$ \Rightarrow \tan \theta = \left( {2 + \sqrt 3 } \right),\left( {2 - \sqrt 3 } \right)$
So when, $\tan \theta = \left( {2 + \sqrt 3 } \right)$
$ \Rightarrow \theta = \dfrac{{5\pi }}{{12}} = {75^o}$
And when, $\tan \theta = \left( {2 - \sqrt 3 } \right)$
$ \Rightarrow \theta = \dfrac{\pi }{{12}} = {15^o}$
So this is the required answer.
Hence options (c) and (d) are the correct answer.
Note:Whenever we face such types of questions the key concept we have to remember is that always recall basic trigonometric identities such as $\left[ {\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$, $\cot \left( {\pi + x} \right) = \cot x$, $\cot \left( {\dfrac{\pi }{2} + x} \right) = - \tan x,\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$, and always recall the formula to solve the complex quadratic equation which is stated above.
Complete step-by-step answer:
Given expression
$\sum\limits_{m = 1}^6 {{\text{cosec}}\left( {\theta + \dfrac{{\left( {m - 1} \right)\pi }}{4}} \right){\text{cosec}}\left( {\theta + \dfrac{{m\pi }}{4}} \right)} = 4\sqrt 2 $, for $0 < \theta < \dfrac{\pi }{2}$
Now we have to find out the values of $\theta $
As we know that cosec x = (1/sin x) so use this property in the above expression we have,
$ \Rightarrow \sum\limits_{m = 1}^6 {\dfrac{1}{{\sin \left( {\theta + \dfrac{{\left( {m - 1} \right)\pi }}{4}} \right)\sin \left( {\theta + \dfrac{{m\pi }}{4}} \right)}}} = 4\sqrt 2 $
Now expand the summation we have,
$ \Rightarrow \dfrac{1}{{\sin \theta \sin \left( {\theta + \dfrac{\pi }{4}} \right)}} + \dfrac{1}{{\sin \left( {\theta + \dfrac{\pi }{4}} \right)\sin \left( {\theta + \dfrac{{2\pi }}{4}} \right)}} + ........... + \dfrac{1}{{\sin \left( {\theta + \dfrac{{5\pi }}{4}} \right)\sin \left( {\theta + \dfrac{{6\pi }}{4}} \right)}} = 4\sqrt 2 $..... (1)
Now, simplify the above expression using the property which is given as,
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\dfrac{{\sin \left( {x + a - x} \right)}}{{\sin x\sin \left( {x + a} \right)}}} \right]$
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\dfrac{{\sin \left( {x + a} \right)\cos x - \cos \left( {x + a} \right)\sin x}}{{\sin x\sin \left( {x + a} \right)}}} \right]$, $\left[ {\because \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$
Now simplify we have,
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\dfrac{{\cos x}}{{\sin x}} - \dfrac{{\cos \left( {x + a} \right)}}{{\sin \left( {x + a} \right)}}} \right]$
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\cot x - \cot \left( {x + a} \right)} \right]$, where cot x = (cos x/sin x)
So use this property in equation (1), where a = $\dfrac{\pi }{4}$ so we have,
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\theta + \dfrac{\pi }{4}} \right) + \cot \left( {\theta + \dfrac{\pi }{4}} \right) - \cot \left( {\theta + \dfrac{{2\pi }}{4}} \right) + ...... + \cot \left( {\theta + \dfrac{{5\pi }}{4}} \right) - \cot \left( {\theta + \dfrac{{6\pi }}{4}} \right)} \right] = 4\sqrt 2 $
So as we see that except first and last term all the terms are cancel out so we have,
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\theta + \dfrac{{6\pi }}{4}} \right)} \right] = 4\sqrt 2 $
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\theta + \dfrac{{3\pi }}{2}} \right)} \right] = 4\sqrt 2 $
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\pi + \left( {\theta + \dfrac{\pi }{2}} \right)} \right)} \right] = 4\sqrt 2 $
Now as we know that $\cot \left( {\pi + x} \right) = \cot x$, as cot is positive in the third quadrant.
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\dfrac{\pi }{2} + \theta } \right)} \right] = 4\sqrt 2 $
Now as we know that $\cot \left( {\dfrac{\pi }{2} + x} \right) = - \tan x,\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$ so use this property we have,
$ \Rightarrow \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}}\left[ {\cot \theta + \tan \theta } \right] = 4\sqrt 2 $
$ \Rightarrow \left[ {\cot \theta + \tan \theta } \right] = 4$
$ \Rightarrow \left[ {\dfrac{1}{{\tan \theta }} + \tan \theta } \right] = 4$
$ \Rightarrow {\tan ^2}\theta - 4\tan \theta + 1 = 0$
So this is a quadratic equation so apply quadratic formula we have,
$ \Rightarrow \tan \theta = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$. Where, a = 1, b = -4, c = 1.
So we have,
$ \Rightarrow \tan \theta = \dfrac{{4 \pm \sqrt {{4^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}} = \dfrac{{4 \pm \sqrt {12} }}{2} = 2 \pm \sqrt 3 $
$ \Rightarrow \tan \theta = \left( {2 + \sqrt 3 } \right),\left( {2 - \sqrt 3 } \right)$
So when, $\tan \theta = \left( {2 + \sqrt 3 } \right)$
$ \Rightarrow \theta = \dfrac{{5\pi }}{{12}} = {75^o}$
And when, $\tan \theta = \left( {2 - \sqrt 3 } \right)$
$ \Rightarrow \theta = \dfrac{\pi }{{12}} = {15^o}$
So this is the required answer.
Hence options (c) and (d) are the correct answer.
Note:Whenever we face such types of questions the key concept we have to remember is that always recall basic trigonometric identities such as $\left[ {\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$, $\cot \left( {\pi + x} \right) = \cot x$, $\cot \left( {\dfrac{\pi }{2} + x} \right) = - \tan x,\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$, and always recall the formula to solve the complex quadratic equation which is stated above.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE