Answer
Verified
459.3k+ views
Hint: We have a trigonometric expression as: $\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\sqrt{2}$
We can write $\sqrt{2}=\text{cosec}\dfrac{\pi }{4}$ . As the expression contains $\text{cosec}\theta $ , try to convert the expression in terms of $\sin \theta $ . Then, we can write $\sin \dfrac{\pi }{4}$ as $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$
Later on, by using the identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ , split the term $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$. Now, simplify the whole expression by cancelling the terms to get an equation in terms of $\cot \theta $ . Now, expand the summation given by putting values of m and cancel out to the terms to get a simplified equation. Now, using various trigonometric identities, find the value of $\theta $
Complete step by step answer:
We have:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\sqrt{2}......(1)$
As we know that: $\text{cosec}\dfrac{\pi }{4}=\sqrt{2}$
So, we can write equation (1) as:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\text{cosec}\dfrac{\pi }{4}......(2)$
As we know that: $\text{cosec}\theta =\dfrac{1}{\sin \theta }$ , so we can write equation (2) as:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{1}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=\dfrac{4}{\text{sin}\dfrac{\pi }{4}} \\
& \sum\limits_{m=1}^{6}{\dfrac{\text{sin}\dfrac{\pi }{4}}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(3) \\
\end{align}\]
Now, we can write: $\sin \dfrac{\pi }{4}=\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$ in equation (3), we get:
\[\sum\limits_{m=1}^{6}{\dfrac{\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(4)\]
Now, by applying identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$, we can write equation (4) as:
\[\sum\limits_{m=1}^{6}{\dfrac{\left[ \sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)-\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(5)\]
Now, by expanding the equation (5), we get:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{\sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4 \\
& \sum\limits_{m=1}^{6}{\dfrac{\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4......(6) \\
\end{align}\]
Since $\dfrac{\cos \theta }{\sin \theta }=\cot \theta $ , we can write equation (6) as:
\[\sum\limits_{m=1}^{6}{\cot \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}-\cot \left( \theta +\dfrac{m\pi }{4} \right)=4......(7)\]
Now, expand the summation by putting the values of m, we get:
\[\begin{align}
& \Rightarrow \left[ \cot \left( \theta +\dfrac{\left( 1-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{\pi }{4} \right) \right]+\left[ \cot \left( \theta +\dfrac{\left( 2-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \right] \\
& \text{ }+.....+\left[ \cot \left( \theta +\dfrac{\left( 6-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right) \right]=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{\pi }{4} \right)+\cot \left( \theta +\dfrac{\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \\
& \text{ }+.....+\cot \left( \theta +\dfrac{5\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{3\pi }{2} \right)=4......(8) \\
\end{align}\]
As we know that: $\cot \left( \dfrac{3\pi }{2}+\theta \right)=-\tan \theta $
So, we can write equation (8) as:
\[\Rightarrow \cot \theta +\tan \theta =4......(9)\]
Now, write $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ in equation (9), we get:
\[\begin{align}
& \Rightarrow \cot \theta +\tan \theta =4 \\
& \Rightarrow \dfrac{\cos \theta }{\sin \theta }+\dfrac{\sin \theta }{\cos \theta }=4 \\
& \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =4\sin \theta \cos \theta ......(10) \\
\end{align}\]
As we know that: \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and \[2\sin \theta \cos \theta =\sin 2\theta \], so we can write equation (10) as:
\[\Rightarrow 1=2\sin 2\theta ......(11)\]
Now, solving for $\theta $, we can write equation (11) as:
\[\begin{align}
& \Rightarrow \sin 2\theta =\dfrac{1}{2} \\
& \Rightarrow \sin 2\theta =\sin \dfrac{\pi }{6}\text{ or }\sin \dfrac{5\pi }{6} \\
& \Rightarrow 2\theta =\dfrac{\pi }{6}\text{ or }\dfrac{5\pi }{6} \\
& \Rightarrow \theta =\dfrac{\pi }{12}\text{ or }\dfrac{5\pi }{12} \\
\end{align}\]
So, the correct answer is “Option C and D”.
Note: For a given trigonometric expression, it is always easier to convert the expression in terms of sine and cosine. Also, if a summation expression is given, always try to expand the summation by putting the values of the variable and cancel out the terms if possible.
We can write $\sqrt{2}=\text{cosec}\dfrac{\pi }{4}$ . As the expression contains $\text{cosec}\theta $ , try to convert the expression in terms of $\sin \theta $ . Then, we can write $\sin \dfrac{\pi }{4}$ as $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$
Later on, by using the identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ , split the term $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$. Now, simplify the whole expression by cancelling the terms to get an equation in terms of $\cot \theta $ . Now, expand the summation given by putting values of m and cancel out to the terms to get a simplified equation. Now, using various trigonometric identities, find the value of $\theta $
Complete step by step answer:
We have:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\sqrt{2}......(1)$
As we know that: $\text{cosec}\dfrac{\pi }{4}=\sqrt{2}$
So, we can write equation (1) as:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\text{cosec}\dfrac{\pi }{4}......(2)$
As we know that: $\text{cosec}\theta =\dfrac{1}{\sin \theta }$ , so we can write equation (2) as:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{1}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=\dfrac{4}{\text{sin}\dfrac{\pi }{4}} \\
& \sum\limits_{m=1}^{6}{\dfrac{\text{sin}\dfrac{\pi }{4}}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(3) \\
\end{align}\]
Now, we can write: $\sin \dfrac{\pi }{4}=\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$ in equation (3), we get:
\[\sum\limits_{m=1}^{6}{\dfrac{\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(4)\]
Now, by applying identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$, we can write equation (4) as:
\[\sum\limits_{m=1}^{6}{\dfrac{\left[ \sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)-\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(5)\]
Now, by expanding the equation (5), we get:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{\sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4 \\
& \sum\limits_{m=1}^{6}{\dfrac{\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4......(6) \\
\end{align}\]
Since $\dfrac{\cos \theta }{\sin \theta }=\cot \theta $ , we can write equation (6) as:
\[\sum\limits_{m=1}^{6}{\cot \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}-\cot \left( \theta +\dfrac{m\pi }{4} \right)=4......(7)\]
Now, expand the summation by putting the values of m, we get:
\[\begin{align}
& \Rightarrow \left[ \cot \left( \theta +\dfrac{\left( 1-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{\pi }{4} \right) \right]+\left[ \cot \left( \theta +\dfrac{\left( 2-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \right] \\
& \text{ }+.....+\left[ \cot \left( \theta +\dfrac{\left( 6-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right) \right]=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{\pi }{4} \right)+\cot \left( \theta +\dfrac{\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \\
& \text{ }+.....+\cot \left( \theta +\dfrac{5\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{3\pi }{2} \right)=4......(8) \\
\end{align}\]
As we know that: $\cot \left( \dfrac{3\pi }{2}+\theta \right)=-\tan \theta $
So, we can write equation (8) as:
\[\Rightarrow \cot \theta +\tan \theta =4......(9)\]
Now, write $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ in equation (9), we get:
\[\begin{align}
& \Rightarrow \cot \theta +\tan \theta =4 \\
& \Rightarrow \dfrac{\cos \theta }{\sin \theta }+\dfrac{\sin \theta }{\cos \theta }=4 \\
& \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =4\sin \theta \cos \theta ......(10) \\
\end{align}\]
As we know that: \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and \[2\sin \theta \cos \theta =\sin 2\theta \], so we can write equation (10) as:
\[\Rightarrow 1=2\sin 2\theta ......(11)\]
Now, solving for $\theta $, we can write equation (11) as:
\[\begin{align}
& \Rightarrow \sin 2\theta =\dfrac{1}{2} \\
& \Rightarrow \sin 2\theta =\sin \dfrac{\pi }{6}\text{ or }\sin \dfrac{5\pi }{6} \\
& \Rightarrow 2\theta =\dfrac{\pi }{6}\text{ or }\dfrac{5\pi }{6} \\
& \Rightarrow \theta =\dfrac{\pi }{12}\text{ or }\dfrac{5\pi }{12} \\
\end{align}\]
So, the correct answer is “Option C and D”.
Note: For a given trigonometric expression, it is always easier to convert the expression in terms of sine and cosine. Also, if a summation expression is given, always try to expand the summation by putting the values of the variable and cancel out the terms if possible.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers