
For $0<\theta <\dfrac{\pi }{2}$ , the solution(s) of $\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\sqrt{2}$ is (are):
a)$\dfrac{\pi }{4}$
b)$\dfrac{\pi }{6}$
c)$\dfrac{\pi }{12}$
d) $\dfrac{5\pi }{12}$
Answer
582.9k+ views
Hint: We have a trigonometric expression as: $\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\sqrt{2}$
We can write $\sqrt{2}=\text{cosec}\dfrac{\pi }{4}$ . As the expression contains $\text{cosec}\theta $ , try to convert the expression in terms of $\sin \theta $ . Then, we can write $\sin \dfrac{\pi }{4}$ as $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$
Later on, by using the identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ , split the term $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$. Now, simplify the whole expression by cancelling the terms to get an equation in terms of $\cot \theta $ . Now, expand the summation given by putting values of m and cancel out to the terms to get a simplified equation. Now, using various trigonometric identities, find the value of $\theta $
Complete step by step answer:
We have:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\sqrt{2}......(1)$
As we know that: $\text{cosec}\dfrac{\pi }{4}=\sqrt{2}$
So, we can write equation (1) as:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\text{cosec}\dfrac{\pi }{4}......(2)$
As we know that: $\text{cosec}\theta =\dfrac{1}{\sin \theta }$ , so we can write equation (2) as:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{1}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=\dfrac{4}{\text{sin}\dfrac{\pi }{4}} \\
& \sum\limits_{m=1}^{6}{\dfrac{\text{sin}\dfrac{\pi }{4}}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(3) \\
\end{align}\]
Now, we can write: $\sin \dfrac{\pi }{4}=\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$ in equation (3), we get:
\[\sum\limits_{m=1}^{6}{\dfrac{\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(4)\]
Now, by applying identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$, we can write equation (4) as:
\[\sum\limits_{m=1}^{6}{\dfrac{\left[ \sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)-\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(5)\]
Now, by expanding the equation (5), we get:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{\sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4 \\
& \sum\limits_{m=1}^{6}{\dfrac{\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4......(6) \\
\end{align}\]
Since $\dfrac{\cos \theta }{\sin \theta }=\cot \theta $ , we can write equation (6) as:
\[\sum\limits_{m=1}^{6}{\cot \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}-\cot \left( \theta +\dfrac{m\pi }{4} \right)=4......(7)\]
Now, expand the summation by putting the values of m, we get:
\[\begin{align}
& \Rightarrow \left[ \cot \left( \theta +\dfrac{\left( 1-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{\pi }{4} \right) \right]+\left[ \cot \left( \theta +\dfrac{\left( 2-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \right] \\
& \text{ }+.....+\left[ \cot \left( \theta +\dfrac{\left( 6-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right) \right]=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{\pi }{4} \right)+\cot \left( \theta +\dfrac{\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \\
& \text{ }+.....+\cot \left( \theta +\dfrac{5\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{3\pi }{2} \right)=4......(8) \\
\end{align}\]
As we know that: $\cot \left( \dfrac{3\pi }{2}+\theta \right)=-\tan \theta $
So, we can write equation (8) as:
\[\Rightarrow \cot \theta +\tan \theta =4......(9)\]
Now, write $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ in equation (9), we get:
\[\begin{align}
& \Rightarrow \cot \theta +\tan \theta =4 \\
& \Rightarrow \dfrac{\cos \theta }{\sin \theta }+\dfrac{\sin \theta }{\cos \theta }=4 \\
& \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =4\sin \theta \cos \theta ......(10) \\
\end{align}\]
As we know that: \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and \[2\sin \theta \cos \theta =\sin 2\theta \], so we can write equation (10) as:
\[\Rightarrow 1=2\sin 2\theta ......(11)\]
Now, solving for $\theta $, we can write equation (11) as:
\[\begin{align}
& \Rightarrow \sin 2\theta =\dfrac{1}{2} \\
& \Rightarrow \sin 2\theta =\sin \dfrac{\pi }{6}\text{ or }\sin \dfrac{5\pi }{6} \\
& \Rightarrow 2\theta =\dfrac{\pi }{6}\text{ or }\dfrac{5\pi }{6} \\
& \Rightarrow \theta =\dfrac{\pi }{12}\text{ or }\dfrac{5\pi }{12} \\
\end{align}\]
So, the correct answer is “Option C and D”.
Note: For a given trigonometric expression, it is always easier to convert the expression in terms of sine and cosine. Also, if a summation expression is given, always try to expand the summation by putting the values of the variable and cancel out the terms if possible.
We can write $\sqrt{2}=\text{cosec}\dfrac{\pi }{4}$ . As the expression contains $\text{cosec}\theta $ , try to convert the expression in terms of $\sin \theta $ . Then, we can write $\sin \dfrac{\pi }{4}$ as $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$
Later on, by using the identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ , split the term $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$. Now, simplify the whole expression by cancelling the terms to get an equation in terms of $\cot \theta $ . Now, expand the summation given by putting values of m and cancel out to the terms to get a simplified equation. Now, using various trigonometric identities, find the value of $\theta $
Complete step by step answer:
We have:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\sqrt{2}......(1)$
As we know that: $\text{cosec}\dfrac{\pi }{4}=\sqrt{2}$
So, we can write equation (1) as:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\text{cosec}\dfrac{\pi }{4}......(2)$
As we know that: $\text{cosec}\theta =\dfrac{1}{\sin \theta }$ , so we can write equation (2) as:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{1}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=\dfrac{4}{\text{sin}\dfrac{\pi }{4}} \\
& \sum\limits_{m=1}^{6}{\dfrac{\text{sin}\dfrac{\pi }{4}}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(3) \\
\end{align}\]
Now, we can write: $\sin \dfrac{\pi }{4}=\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$ in equation (3), we get:
\[\sum\limits_{m=1}^{6}{\dfrac{\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(4)\]
Now, by applying identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$, we can write equation (4) as:
\[\sum\limits_{m=1}^{6}{\dfrac{\left[ \sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)-\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(5)\]
Now, by expanding the equation (5), we get:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{\sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4 \\
& \sum\limits_{m=1}^{6}{\dfrac{\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4......(6) \\
\end{align}\]
Since $\dfrac{\cos \theta }{\sin \theta }=\cot \theta $ , we can write equation (6) as:
\[\sum\limits_{m=1}^{6}{\cot \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}-\cot \left( \theta +\dfrac{m\pi }{4} \right)=4......(7)\]
Now, expand the summation by putting the values of m, we get:
\[\begin{align}
& \Rightarrow \left[ \cot \left( \theta +\dfrac{\left( 1-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{\pi }{4} \right) \right]+\left[ \cot \left( \theta +\dfrac{\left( 2-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \right] \\
& \text{ }+.....+\left[ \cot \left( \theta +\dfrac{\left( 6-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right) \right]=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{\pi }{4} \right)+\cot \left( \theta +\dfrac{\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \\
& \text{ }+.....+\cot \left( \theta +\dfrac{5\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{3\pi }{2} \right)=4......(8) \\
\end{align}\]
As we know that: $\cot \left( \dfrac{3\pi }{2}+\theta \right)=-\tan \theta $
So, we can write equation (8) as:
\[\Rightarrow \cot \theta +\tan \theta =4......(9)\]
Now, write $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ in equation (9), we get:
\[\begin{align}
& \Rightarrow \cot \theta +\tan \theta =4 \\
& \Rightarrow \dfrac{\cos \theta }{\sin \theta }+\dfrac{\sin \theta }{\cos \theta }=4 \\
& \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =4\sin \theta \cos \theta ......(10) \\
\end{align}\]
As we know that: \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and \[2\sin \theta \cos \theta =\sin 2\theta \], so we can write equation (10) as:
\[\Rightarrow 1=2\sin 2\theta ......(11)\]
Now, solving for $\theta $, we can write equation (11) as:
\[\begin{align}
& \Rightarrow \sin 2\theta =\dfrac{1}{2} \\
& \Rightarrow \sin 2\theta =\sin \dfrac{\pi }{6}\text{ or }\sin \dfrac{5\pi }{6} \\
& \Rightarrow 2\theta =\dfrac{\pi }{6}\text{ or }\dfrac{5\pi }{6} \\
& \Rightarrow \theta =\dfrac{\pi }{12}\text{ or }\dfrac{5\pi }{12} \\
\end{align}\]
So, the correct answer is “Option C and D”.
Note: For a given trigonometric expression, it is always easier to convert the expression in terms of sine and cosine. Also, if a summation expression is given, always try to expand the summation by putting the values of the variable and cancel out the terms if possible.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

