Answer
Verified
469.5k+ views
Hint: Draw the corresponding circuit diagram when the cell is connected across the resistance 0f 5 ohms. Shown the internal resistance r in series. It is given that the potential difference across 5 ohms is 1.8V. Hence, calculate the current using ohm’s law. Then by using ohm’s law calculate the internal resistance.
Formula used:
V=iR
Complete step by step answer:
Cell is a device that is used to create a potential difference in the circuit and thus there is flow of charges in the circuit. We define emf for a cell.
When the circuit is open and there is no current, the potential difference across the cell’s terminal is equal to emf E.
When the cell is connected across a resistance the cell creates a potential difference equal to E across the resistance (R) and due the potential difference, there is current in the circuit. The value of the current is $i=\dfrac{E}{R}$.
However, every cell has a self resistance called internal resistance (r). Therefore, when a cell is connected across the resistance, the internal resistance contributes to the net resistance and thus the current in the circuit is less than then $\dfrac{E}{R}$.
It is given that E=2.2V.
When the cell is connected across the resistance of 5 ohms, The potential difference across 5 ohms is 1.8V.
Let us make the diagram of the above circuit. The current in the circuit be i.
Let the potential difference across 5 ohms resistance be V. Then according to Ohm’s law, V=iR.
This implies, $1.8=i(5)$
$\Rightarrow i=\dfrac{1.8}{5}=0.36A$.
Therefore current in the circuit is 0.36 A.
The potential difference that should have been created across the resistance of 5 ohms is 2.2V. However, due to the internal resistance, the potential difference across the resistance is 1.8V. That means the potential difference across r is 2.2-1.8=0.4V.
The current flowing through r is 0.36A.
Again use Ohm’s law.
Hence, we get
$0.4=0.36r$
$\Rightarrow r=\dfrac{0.4}{0.36}=1.11ohms$
Therefore, the internal resistance of the cell is 1.11 ohms.
Note:
Note that internal resistance of a cell is inside the cell though in the diagram it is shown outside the cell. The internal resistance is the same as a normal resistance and takes up some potential difference. It is the same as connecting a resistance r in series to an ideal cell.
Formula used:
V=iR
Complete step by step answer:
Cell is a device that is used to create a potential difference in the circuit and thus there is flow of charges in the circuit. We define emf for a cell.
When the circuit is open and there is no current, the potential difference across the cell’s terminal is equal to emf E.
When the cell is connected across a resistance the cell creates a potential difference equal to E across the resistance (R) and due the potential difference, there is current in the circuit. The value of the current is $i=\dfrac{E}{R}$.
However, every cell has a self resistance called internal resistance (r). Therefore, when a cell is connected across the resistance, the internal resistance contributes to the net resistance and thus the current in the circuit is less than then $\dfrac{E}{R}$.
It is given that E=2.2V.
When the cell is connected across the resistance of 5 ohms, The potential difference across 5 ohms is 1.8V.
Let us make the diagram of the above circuit. The current in the circuit be i.
Let the potential difference across 5 ohms resistance be V. Then according to Ohm’s law, V=iR.
This implies, $1.8=i(5)$
$\Rightarrow i=\dfrac{1.8}{5}=0.36A$.
Therefore current in the circuit is 0.36 A.
The potential difference that should have been created across the resistance of 5 ohms is 2.2V. However, due to the internal resistance, the potential difference across the resistance is 1.8V. That means the potential difference across r is 2.2-1.8=0.4V.
The current flowing through r is 0.36A.
Again use Ohm’s law.
Hence, we get
$0.4=0.36r$
$\Rightarrow r=\dfrac{0.4}{0.36}=1.11ohms$
Therefore, the internal resistance of the cell is 1.11 ohms.
Note:
Note that internal resistance of a cell is inside the cell though in the diagram it is shown outside the cell. The internal resistance is the same as a normal resistance and takes up some potential difference. It is the same as connecting a resistance r in series to an ideal cell.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE