Answer
Verified
444.9k+ views
Hint: Using the relation between amplification factor, collector current and base current calculate the collector current. Use the formula for voltage across the collector and emitter to determine the collector emitter current.
Complete step by step answer:
The current amplification factor is given as,
\[\beta = \dfrac{{{I_C}}}{{{I_B}}}\]
Here, \[{I_C}\] is the collector current and \[{I_B}\] is the base current.
The voltage across collector emitter is given as,
\[{V_{CE}} = {R_L}{I_C}\]
Here, \[{R_L}\] is the load resistor across the output of the collector emitter.
We know that the current amplification factor is defined as the ratio of collector current to the base current.
\[\beta = \dfrac{{{I_C}}}{{{I_B}}}\]
Here, \[{I_C}\] is the collector current and \[{I_B}\] is the base current.
We know that in common emitter configuration, the input current is given to the base of the transistor. Therefore, the base current is \[{I_B} = 5\,\mu A\].
From the above equation, we can calculate the collector current as follows,
\[{I_C} = \beta {I_B}\]
We substitute 100 for \[\beta \] and \[5\,\mu A\] for \[{I_B}\] in the above equation.
\[{I_C} = \left( {100} \right)\left( {5 \times {{10}^{ - 6}}A} \right)\]
\[ \Rightarrow {I_C} = 5 \times {10^{ - 4}}\,A\]
\[ \Rightarrow {I_C} = 0.5\,mA\]
We have the voltage across collector emitter is given as,
\[{V_{CE}} = {R_L}{I_C}\]
Here, \[{R_L}\] is the load resistor across the output of the collector emitter.
We substitute \[10\,k\Omega \] for \[{R_L}\] and \[0.5\,mA\] for \[{I_C}\] in the above equation.
\[{V_{CE}} = \left( {10 \times {{10}^3}\Omega } \right)\left( {0.5 \times {{10}^{ - 3}}A} \right)\]
\[ \Rightarrow {V_{CE}} = 5\,V\]
So, the correct answer is “Option A”.
Note:
The amplification factor or current gain \[\beta \] represents the increase in collector current in terms of base current. While solving the question relating the output of transistors, students should know the relation between collector current, base current and emitter current, \[{I_E} = {I_C} + {I_B}\]. The voltage across the collector-emitter is the change in the output voltage between collector and emitter.
Complete step by step answer:
The current amplification factor is given as,
\[\beta = \dfrac{{{I_C}}}{{{I_B}}}\]
Here, \[{I_C}\] is the collector current and \[{I_B}\] is the base current.
The voltage across collector emitter is given as,
\[{V_{CE}} = {R_L}{I_C}\]
Here, \[{R_L}\] is the load resistor across the output of the collector emitter.
We know that the current amplification factor is defined as the ratio of collector current to the base current.
\[\beta = \dfrac{{{I_C}}}{{{I_B}}}\]
Here, \[{I_C}\] is the collector current and \[{I_B}\] is the base current.
We know that in common emitter configuration, the input current is given to the base of the transistor. Therefore, the base current is \[{I_B} = 5\,\mu A\].
From the above equation, we can calculate the collector current as follows,
\[{I_C} = \beta {I_B}\]
We substitute 100 for \[\beta \] and \[5\,\mu A\] for \[{I_B}\] in the above equation.
\[{I_C} = \left( {100} \right)\left( {5 \times {{10}^{ - 6}}A} \right)\]
\[ \Rightarrow {I_C} = 5 \times {10^{ - 4}}\,A\]
\[ \Rightarrow {I_C} = 0.5\,mA\]
We have the voltage across collector emitter is given as,
\[{V_{CE}} = {R_L}{I_C}\]
Here, \[{R_L}\] is the load resistor across the output of the collector emitter.
We substitute \[10\,k\Omega \] for \[{R_L}\] and \[0.5\,mA\] for \[{I_C}\] in the above equation.
\[{V_{CE}} = \left( {10 \times {{10}^3}\Omega } \right)\left( {0.5 \times {{10}^{ - 3}}A} \right)\]
\[ \Rightarrow {V_{CE}} = 5\,V\]
So, the correct answer is “Option A”.
Note:
The amplification factor or current gain \[\beta \] represents the increase in collector current in terms of base current. While solving the question relating the output of transistors, students should know the relation between collector current, base current and emitter current, \[{I_E} = {I_C} + {I_B}\]. The voltage across the collector-emitter is the change in the output voltage between collector and emitter.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE