
For a rectangular hyperbola $xy = {c^2}$, what is the length of the transverse axis, length of conjugate axis and length of latus rectum?
Answer
614.7k+ views
Hint: In this question use the concept that in a rectangular hyperbola the length of transverse axis, length of conjugate axis and length of latus rectum all are equal and it is along the line y = x. Use this to find the coordinates and therefore apply distance formula to get the respective lengths.
Complete Step-by-Step solution:
Given equation of rectangular hyperbola is $xy = {c^2}$...................... (1)
Now as we know that in a rectangular hyperbola the length of transverse axis, length of conjugate axis and length of latus rectum all are equal and it is along y = x................. (2).
So from equation (1) we have,
$ \Rightarrow x.x = {c^2}$
$ \Rightarrow {x^2} = {c^2}$
Now take square root on both sides we have,
$ \Rightarrow x = \sqrt {{c^2}} = \pm c$
Now from equation (2) we have,
$ \Rightarrow y = \pm c$
Therefore (x, y) = (c, c) and (-c, -c)
Now as we know distance between two points ($x_1$, $y_1$) and ($x_2$, $y_2$) is
$d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Let ($x_1$, $y_1$) = (c, c)
And ($x_2$, $y_2$) = (-c, -c) is
Therefore the distance is
$ \Rightarrow d = \sqrt {{{\left( { - c - c} \right)}^2} + {{\left( { - c - c} \right)}^2}} = \sqrt {4{c^2} + 4{c^2}} = 2c\sqrt 2 $
So the length of transverse axis, length of conjugate axis and length of latus rectum is $2c\sqrt 2 $.
So this is the required answer.
Note: A particular kind of hyperbola in which lengths of transverse and conjugate axis are equal is called a rectangular or an equilateral hyperbola. The eccentricity of the rectangular hyperbola is $\sqrt 2 $. The vertices of a rectangular hyperbola is given as $\left( {c,c} \right){\text{ and }}\left( { - c, - c} \right)$, with foci as $\left( {\sqrt 2 c,\sqrt 2 c} \right){\text{ and }}\left( { - \sqrt 2 c, - \sqrt 2 c} \right)$, the directrices is given as $x + y = \pm c$, for general equation of $xy = {c^2}$. The graphical representation of this hyperbola is shown as
Complete Step-by-Step solution:
Given equation of rectangular hyperbola is $xy = {c^2}$...................... (1)
Now as we know that in a rectangular hyperbola the length of transverse axis, length of conjugate axis and length of latus rectum all are equal and it is along y = x................. (2).
So from equation (1) we have,
$ \Rightarrow x.x = {c^2}$
$ \Rightarrow {x^2} = {c^2}$
Now take square root on both sides we have,
$ \Rightarrow x = \sqrt {{c^2}} = \pm c$
Now from equation (2) we have,
$ \Rightarrow y = \pm c$
Therefore (x, y) = (c, c) and (-c, -c)
Now as we know distance between two points ($x_1$, $y_1$) and ($x_2$, $y_2$) is
$d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Let ($x_1$, $y_1$) = (c, c)
And ($x_2$, $y_2$) = (-c, -c) is
Therefore the distance is
$ \Rightarrow d = \sqrt {{{\left( { - c - c} \right)}^2} + {{\left( { - c - c} \right)}^2}} = \sqrt {4{c^2} + 4{c^2}} = 2c\sqrt 2 $
So the length of transverse axis, length of conjugate axis and length of latus rectum is $2c\sqrt 2 $.
So this is the required answer.
Note: A particular kind of hyperbola in which lengths of transverse and conjugate axis are equal is called a rectangular or an equilateral hyperbola. The eccentricity of the rectangular hyperbola is $\sqrt 2 $. The vertices of a rectangular hyperbola is given as $\left( {c,c} \right){\text{ and }}\left( { - c, - c} \right)$, with foci as $\left( {\sqrt 2 c,\sqrt 2 c} \right){\text{ and }}\left( { - \sqrt 2 c, - \sqrt 2 c} \right)$, the directrices is given as $x + y = \pm c$, for general equation of $xy = {c^2}$. The graphical representation of this hyperbola is shown as
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

