Answer
Verified
447.3k+ views
Hint: This question can easily be solved using the formula for the relation for the refraction at a single spherical refracting surface. Use this relation to find the relation between the two sides of lenses with different refractive indices. Then, suppose the light is approaching the lens from the side with the refractive index ${{\mu }_{1}}$ and the focal length ${{f}_{1}}$. After the first refractions, the image will become the object for the second side and then solve again for the case.
Complete answer:
Before we start solving the question, let us take a look at all the parameters that have been given to us in the above question.
Radius of curvature = R
Two media of refractive indices ${{\mu }_{1}}$ and ${{\mu }_{2}}$, the two principal focal lengths are ${{f}_{1}}$ and ${{f}_{2}}$ respectively
Now,
For the surface having the focal length and refractive index ${{f}_{1}}$ and ${{\mu }_{1}}$respectively
So,
$\Rightarrow \dfrac{\mu }{{{v}_{1}}}-\dfrac{{{\mu }_{1}}}{u}=\dfrac{\mu -{{\mu }_{1}}}{R}$ ……………. (1)
Now,
For the surface having the focal length and refractive index ${{f}_{2}}$ and ${{\mu }_{2}}$respectively
So,
$\Rightarrow \dfrac{{{\mu }_{2}}}{v}-\dfrac{\mu }{{{v}_{1}}}=\dfrac{{{\mu }_{2}}-\mu }{R}$ ……………. (2)
Now,
Adding the equations (1) and (2)
We have
\[\Rightarrow \dfrac{{{\mu }_{2}}}{v}-\dfrac{{{\mu }_{1}}}{u}=\dfrac{\mu -{{\mu }_{1}}}{R}+\dfrac{{{\mu }_{2}}-\mu }{R}\]
\[\Rightarrow \dfrac{{{\mu }_{2}}}{v}-\dfrac{{{\mu }_{1}}}{u}=\dfrac{{{\mu }_{2}}-{{\mu }_{1}}}{R}\]
Now,
For the first refractive
$u=\infty $
And, $v={{f}_{1}}$
We have,
\[\Rightarrow \dfrac{{{\mu }_{2}}}{{{f}_{1}}}-\dfrac{{{\mu }_{1}}}{\infty }=\dfrac{{{\mu }_{2}}-{{\mu }_{1}}}{R}\]
\[\Rightarrow \dfrac{1}{{{f}_{1}}}=\dfrac{1}{{{\mu }_{2}}}[\dfrac{{{\mu }_{2}}-{{\mu }_{1}}}{R}]\] ………………….. (3)
For the second refractive
$v=\infty $
And, $u={{f}_{2}}$
We have,
\[\Rightarrow \dfrac{{{\mu }_{2}}}{\infty }-\dfrac{{{\mu }_{1}}}{{{f}_{2}}}=\dfrac{{{\mu }_{2}}-{{\mu }_{1}}}{R}\]
\[\Rightarrow -\dfrac{1}{{{f}_{2}}}=\dfrac{1}{{{\mu }_{1}}}[\dfrac{{{\mu }_{2}}-{{\mu }_{1}}}{R}]\] ………………….. (4)
Now, dividing equation (3) from equation (4)
We have
\[\Rightarrow \dfrac{{{f}_{2}}}{{{f}_{1}}}=-\dfrac{{{\mu }_{1}}}{{{\mu }_{2}}}\]
Or,
$\dfrac{{{f}_{1}}}{{{\mu }_{2}}}=-\dfrac{{{f}_{2}}}{{{\mu }_{1}}}$
So, for a spherical surface of radius of curvature R separating two media of refractive indices ${{\mu }_{1}}$ and ${{\mu }_{2}}$, the two principal focal lengths are ${{f}_{1}}$ and ${{f}_{2}}$ respectively. Which one of the following relations is $\dfrac{{{f}_{1}}}{{{\mu }_{2}}}=-\dfrac{{{f}_{2}}}{{{\mu }_{1}}}$.
So, the correct answer is “Option C”.
Note:
Ibn al-Haitham is known as the father of optics and vision theory. During the 13th century, the first wearable glasses recognised by history emerged in Italy. Primitive glass-blown lenses were mounted into frames of wood or leather (or sometimes animal horn frames) and either carried in front of the face or perched on the nose.
Complete answer:
Before we start solving the question, let us take a look at all the parameters that have been given to us in the above question.
Radius of curvature = R
Two media of refractive indices ${{\mu }_{1}}$ and ${{\mu }_{2}}$, the two principal focal lengths are ${{f}_{1}}$ and ${{f}_{2}}$ respectively
Now,
For the surface having the focal length and refractive index ${{f}_{1}}$ and ${{\mu }_{1}}$respectively
So,
$\Rightarrow \dfrac{\mu }{{{v}_{1}}}-\dfrac{{{\mu }_{1}}}{u}=\dfrac{\mu -{{\mu }_{1}}}{R}$ ……………. (1)
Now,
For the surface having the focal length and refractive index ${{f}_{2}}$ and ${{\mu }_{2}}$respectively
So,
$\Rightarrow \dfrac{{{\mu }_{2}}}{v}-\dfrac{\mu }{{{v}_{1}}}=\dfrac{{{\mu }_{2}}-\mu }{R}$ ……………. (2)
Now,
Adding the equations (1) and (2)
We have
\[\Rightarrow \dfrac{{{\mu }_{2}}}{v}-\dfrac{{{\mu }_{1}}}{u}=\dfrac{\mu -{{\mu }_{1}}}{R}+\dfrac{{{\mu }_{2}}-\mu }{R}\]
\[\Rightarrow \dfrac{{{\mu }_{2}}}{v}-\dfrac{{{\mu }_{1}}}{u}=\dfrac{{{\mu }_{2}}-{{\mu }_{1}}}{R}\]
Now,
For the first refractive
$u=\infty $
And, $v={{f}_{1}}$
We have,
\[\Rightarrow \dfrac{{{\mu }_{2}}}{{{f}_{1}}}-\dfrac{{{\mu }_{1}}}{\infty }=\dfrac{{{\mu }_{2}}-{{\mu }_{1}}}{R}\]
\[\Rightarrow \dfrac{1}{{{f}_{1}}}=\dfrac{1}{{{\mu }_{2}}}[\dfrac{{{\mu }_{2}}-{{\mu }_{1}}}{R}]\] ………………….. (3)
For the second refractive
$v=\infty $
And, $u={{f}_{2}}$
We have,
\[\Rightarrow \dfrac{{{\mu }_{2}}}{\infty }-\dfrac{{{\mu }_{1}}}{{{f}_{2}}}=\dfrac{{{\mu }_{2}}-{{\mu }_{1}}}{R}\]
\[\Rightarrow -\dfrac{1}{{{f}_{2}}}=\dfrac{1}{{{\mu }_{1}}}[\dfrac{{{\mu }_{2}}-{{\mu }_{1}}}{R}]\] ………………….. (4)
Now, dividing equation (3) from equation (4)
We have
\[\Rightarrow \dfrac{{{f}_{2}}}{{{f}_{1}}}=-\dfrac{{{\mu }_{1}}}{{{\mu }_{2}}}\]
Or,
$\dfrac{{{f}_{1}}}{{{\mu }_{2}}}=-\dfrac{{{f}_{2}}}{{{\mu }_{1}}}$
So, for a spherical surface of radius of curvature R separating two media of refractive indices ${{\mu }_{1}}$ and ${{\mu }_{2}}$, the two principal focal lengths are ${{f}_{1}}$ and ${{f}_{2}}$ respectively. Which one of the following relations is $\dfrac{{{f}_{1}}}{{{\mu }_{2}}}=-\dfrac{{{f}_{2}}}{{{\mu }_{1}}}$.
So, the correct answer is “Option C”.
Note:
Ibn al-Haitham is known as the father of optics and vision theory. During the 13th century, the first wearable glasses recognised by history emerged in Italy. Primitive glass-blown lenses were mounted into frames of wood or leather (or sometimes animal horn frames) and either carried in front of the face or perched on the nose.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE