
For a $\vartriangle {\text{XYZ}}$, ${\text{ZY}} = 12{\text{ m}}$, ${\text{YX}} = 8{\text{ m}}$ and ${\text{XZ}} = 10{\text{ m}}$. If $\vartriangle {\text{ZYX}} \cong \vartriangle {\text{ABC}}$, then the length of side AC (in meters) is
$
{\text{A}}{\text{. 10}} \\
{\text{B}}{\text{. 12}} \\
{\text{C}}{\text{. 8}} \\
{\text{D}}{\text{. 1}} \\
$

Answer
232.8k+ views
Hint- Here, we will be using the property that the length of the corresponding sides will be equal in any two congruent triangles.
Given, in a $\vartriangle {\text{XYZ}}$, ${\text{ZY}} = 12{\text{ m}}$, ${\text{YX}} = 8{\text{ m}}$ and ${\text{XZ}} = 10{\text{ m}}$
Since we know that for any two congruent triangles, the corresponding sides are always equal.
Also given that $\vartriangle {\text{ZYX}} \cong \vartriangle {\text{ABC}}$
Clearly from the figure, we can see that the side AB in $\vartriangle {\text{ABC}}$ is corresponding to side XY in $\vartriangle {\text{XYZ}}$, side BC in $\vartriangle {\text{ABC}}$ is corresponding to side YZ in $\vartriangle {\text{XYZ}}$ and side AC in $\vartriangle {\text{ABC}}$ is corresponding to side XZ in $\vartriangle {\text{XYZ}}$.
i.e., we can say ${\text{AB}} = {\text{XY}} = {\text{YX}} = 8{\text{ m}}$, ${\text{BC}} = {\text{YZ}} = {\text{ZY}} = 12{\text{ m}}$ and ${\text{AC}} = {\text{XZ}} = 10{\text{ m}}$.
Hence, the length of side AC is 10 meters.
Therefore, option A is correct.
Note- In these type of problems, the corresponding sides of the given congruent triangles are needed to be identified carefully with the help of their diagrams.
Given, in a $\vartriangle {\text{XYZ}}$, ${\text{ZY}} = 12{\text{ m}}$, ${\text{YX}} = 8{\text{ m}}$ and ${\text{XZ}} = 10{\text{ m}}$
Since we know that for any two congruent triangles, the corresponding sides are always equal.
Also given that $\vartriangle {\text{ZYX}} \cong \vartriangle {\text{ABC}}$
Clearly from the figure, we can see that the side AB in $\vartriangle {\text{ABC}}$ is corresponding to side XY in $\vartriangle {\text{XYZ}}$, side BC in $\vartriangle {\text{ABC}}$ is corresponding to side YZ in $\vartriangle {\text{XYZ}}$ and side AC in $\vartriangle {\text{ABC}}$ is corresponding to side XZ in $\vartriangle {\text{XYZ}}$.
i.e., we can say ${\text{AB}} = {\text{XY}} = {\text{YX}} = 8{\text{ m}}$, ${\text{BC}} = {\text{YZ}} = {\text{ZY}} = 12{\text{ m}}$ and ${\text{AC}} = {\text{XZ}} = 10{\text{ m}}$.
Hence, the length of side AC is 10 meters.
Therefore, option A is correct.
Note- In these type of problems, the corresponding sides of the given congruent triangles are needed to be identified carefully with the help of their diagrams.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Square vs Rhombus: Key Differences Explained for Students

Power vs Exponent: Key Differences Explained for Students

Arithmetic Mean Formula Explained Simply

Algebraic Formula: Key Concepts & Easy Examples

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

JEE Mains 2026 January 21 Shift 2 Question Paper with Solutions PDF - Complete Exam Analysis

JEE Main 2026 Jan 22 Shift 2 Today Paper Live Analysis With Detailed Solutions

Other Pages
NCERT Solutions For Class 9 Maths Chapter 9 Circles (2025-26)

Fuel Cost Calculator – Estimate Your Journey Expenses Easily

NCERT Solutions For Class 9 Maths Chapter 11 Surface Areas and Volumes (2025-26)

NCERT Solutions For Class 9 Maths Chapter 11 Surface Areas And Volumes Exercise 11.3 (2025-26)

NCERT Solutions For Class 9 Maths Chapter 12 Statistics (2025-26)

NCERT Solutions For Class 9 Maths Chapter 10 Heron's Formula (2025-26)


