For a $\vartriangle {\text{XYZ}}$, ${\text{ZY}} = 12{\text{ m}}$, ${\text{YX}} = 8{\text{ m}}$ and ${\text{XZ}} = 10{\text{ m}}$. If $\vartriangle {\text{ZYX}} \cong \vartriangle {\text{ABC}}$, then the length of side AC (in meters) is
$
{\text{A}}{\text{. 10}} \\
{\text{B}}{\text{. 12}} \\
{\text{C}}{\text{. 8}} \\
{\text{D}}{\text{. 1}} \\
$
Answer
Verified
123k+ views
Hint- Here, we will be using the property that the length of the corresponding sides will be equal in any two congruent triangles.
Given, in a $\vartriangle {\text{XYZ}}$, ${\text{ZY}} = 12{\text{ m}}$, ${\text{YX}} = 8{\text{ m}}$ and ${\text{XZ}} = 10{\text{ m}}$
Since we know that for any two congruent triangles, the corresponding sides are always equal.
Also given that $\vartriangle {\text{ZYX}} \cong \vartriangle {\text{ABC}}$
Clearly from the figure, we can see that the side AB in $\vartriangle {\text{ABC}}$ is corresponding to side XY in $\vartriangle {\text{XYZ}}$, side BC in $\vartriangle {\text{ABC}}$ is corresponding to side YZ in $\vartriangle {\text{XYZ}}$ and side AC in $\vartriangle {\text{ABC}}$ is corresponding to side XZ in $\vartriangle {\text{XYZ}}$.
i.e., we can say ${\text{AB}} = {\text{XY}} = {\text{YX}} = 8{\text{ m}}$, ${\text{BC}} = {\text{YZ}} = {\text{ZY}} = 12{\text{ m}}$ and ${\text{AC}} = {\text{XZ}} = 10{\text{ m}}$.
Hence, the length of side AC is 10 meters.
Therefore, option A is correct.
Note- In these type of problems, the corresponding sides of the given congruent triangles are needed to be identified carefully with the help of their diagrams.
Given, in a $\vartriangle {\text{XYZ}}$, ${\text{ZY}} = 12{\text{ m}}$, ${\text{YX}} = 8{\text{ m}}$ and ${\text{XZ}} = 10{\text{ m}}$
Since we know that for any two congruent triangles, the corresponding sides are always equal.
Also given that $\vartriangle {\text{ZYX}} \cong \vartriangle {\text{ABC}}$
Clearly from the figure, we can see that the side AB in $\vartriangle {\text{ABC}}$ is corresponding to side XY in $\vartriangle {\text{XYZ}}$, side BC in $\vartriangle {\text{ABC}}$ is corresponding to side YZ in $\vartriangle {\text{XYZ}}$ and side AC in $\vartriangle {\text{ABC}}$ is corresponding to side XZ in $\vartriangle {\text{XYZ}}$.
i.e., we can say ${\text{AB}} = {\text{XY}} = {\text{YX}} = 8{\text{ m}}$, ${\text{BC}} = {\text{YZ}} = {\text{ZY}} = 12{\text{ m}}$ and ${\text{AC}} = {\text{XZ}} = 10{\text{ m}}$.
Hence, the length of side AC is 10 meters.
Therefore, option A is correct.
Note- In these type of problems, the corresponding sides of the given congruent triangles are needed to be identified carefully with the help of their diagrams.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events
Difference Between Area and Volume
Area of a Rhombus Formula | Perimeter and Area of Rhombus
Difference Between Power and Exponent: JEE Main 2024
Algebraic Formula
Difference Between Constants and Variables: JEE Main 2024
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main 2025 22 Jan Shift 1 Question Paper with Solutions
JEE Main Physics Question Paper with Answer Keys and Solutions
JEE Main Question Papers 2025
JEE Main 27 January 2024 Shift 1 Question Paper with Solutions
JEE Main Sample Paper (Set 1) with Solutions (2024-25)
Other Pages
NCERT Solutions for Class 9 Maths Chapter 9 Circles
NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volume
NCERT Solutions for Class 9 Maths Chapter 11 Surface Areas And Volumes Ex 11.3
NCERT Solutions for Class 9 Maths Chapter 12 Statistics
NCERT Solutions for Class 9 Maths Chapter 10 Heron'S Formula
NCERT Solutions for Class 9 Maths In Hindi Chapter 1 Number System