
For all positive integers n, \[{3^{2n}} - 2n + 1\] is divisible by
A. 2
B. 4
C. 8
D. 12
Answer
576.3k+ views
Hint:We will have to start the question by hit trial. That is we have to put values for different n and check for divisibility and further can be proved by principle of mathematical induction.
Complete step-by-step answer:
We have to check whether \[{3^{2n}} - 2n + 1\] is divisible by any of the options for all values of n which belong to natural numbers.
We will start by putting 1 in place of n and check the divisibility –
=\[{3^{2n}} - 2n + 1\]
=\[{3^{2(1)}} - 2(1) + 1\]
=\[9 - 2 + 1\]
=\[8\]
Therefore, it is divisible by 2, 4 and 8 from the options.
Now, we will put 2 in place of n, we get –
=\[{3^{2n}} - 2n + 1\]
=\[{3^{2(2)}} - 2(2) + 1\]
=\[81 - 4 + 1\]
=\[78\]
This is divisible by only 2.
Therefore, 2 is the correct answer.
So, the correct answer is “Option A”.
Note:This question can be solved by an alternative method by principle of mathematical induction.
Consider $f(n)$ = \[{3^{2n}} - 2n + 1\]
Let us check if it is divisible by 2 for that it must be true for n=1,
=\[{3^{2n}} - 2n + 1\]
=\[{3^{2(1)}} - 2(1) + 1\]
=\[9 - 2 + 1\]
=\[8\]
Therefore, it is divisible by 2.
Let us assume that \[{3^{2n}} - 2n + 1\] is divisible by 2 for any value of n=m.
=\[{3^{2n}} - 2n + 1\]
For n=m we have,
$F(m)$ =\[{3^{2(m)}} - 2(m) + 1\] = $2p……….. (1)$ (Since, it is assumed to be divisible by 2)
Now, we check for n=m+1,
$F(m+1)$ =\[{3^{2(m + 1)}} - 2(m + 1) + 1\]
$F(m+1)$ =\[{9.3^{2}} - 2(m) - 1\]
Rearranging and adding 1 and subtracting 1 we get,
=\[{3^{2n}} - 2(n) - 1 + ( - 1 - 1) + {8.3^{2n}}\]
=\[{3^{2n}} - 2(n) - 1 + {8.3^{2n}} - 2\]
From (1) we have,
=\[2p + 2({4.3^{2n}} - 1)\]
=\[2[p + ({4.3^{2n}} - 1)]\]
From above equation it is divisible by 2
Since, F(m + 1) is true, whenever F(m) is true.
Thus, F(1) is true and F(k + 1) is true, whenever F(k) is true.
Hence, by the principle of mathematical induction, F(n) is true for all n ∈ N.
Complete step-by-step answer:
We have to check whether \[{3^{2n}} - 2n + 1\] is divisible by any of the options for all values of n which belong to natural numbers.
We will start by putting 1 in place of n and check the divisibility –
=\[{3^{2n}} - 2n + 1\]
=\[{3^{2(1)}} - 2(1) + 1\]
=\[9 - 2 + 1\]
=\[8\]
Therefore, it is divisible by 2, 4 and 8 from the options.
Now, we will put 2 in place of n, we get –
=\[{3^{2n}} - 2n + 1\]
=\[{3^{2(2)}} - 2(2) + 1\]
=\[81 - 4 + 1\]
=\[78\]
This is divisible by only 2.
Therefore, 2 is the correct answer.
So, the correct answer is “Option A”.
Note:This question can be solved by an alternative method by principle of mathematical induction.
Consider $f(n)$ = \[{3^{2n}} - 2n + 1\]
Let us check if it is divisible by 2 for that it must be true for n=1,
=\[{3^{2n}} - 2n + 1\]
=\[{3^{2(1)}} - 2(1) + 1\]
=\[9 - 2 + 1\]
=\[8\]
Therefore, it is divisible by 2.
Let us assume that \[{3^{2n}} - 2n + 1\] is divisible by 2 for any value of n=m.
=\[{3^{2n}} - 2n + 1\]
For n=m we have,
$F(m)$ =\[{3^{2(m)}} - 2(m) + 1\] = $2p……….. (1)$ (Since, it is assumed to be divisible by 2)
Now, we check for n=m+1,
$F(m+1)$ =\[{3^{2(m + 1)}} - 2(m + 1) + 1\]
$F(m+1)$ =\[{9.3^{2}} - 2(m) - 1\]
Rearranging and adding 1 and subtracting 1 we get,
=\[{3^{2n}} - 2(n) - 1 + ( - 1 - 1) + {8.3^{2n}}\]
=\[{3^{2n}} - 2(n) - 1 + {8.3^{2n}} - 2\]
From (1) we have,
=\[2p + 2({4.3^{2n}} - 1)\]
=\[2[p + ({4.3^{2n}} - 1)]\]
From above equation it is divisible by 2
Since, F(m + 1) is true, whenever F(m) is true.
Thus, F(1) is true and F(k + 1) is true, whenever F(k) is true.
Hence, by the principle of mathematical induction, F(n) is true for all n ∈ N.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

