Answer
Verified
393.3k+ views
Hint: Find the coefficient of linear expansion for each sides and then use the formula to find the coefficient of volume expansion then compare them to get the relation between the coefficient of volume expansion to linear expansion.
Formula used:
The linear expansion of any solid is given by,
\[l' = {l_0}(1 + \alpha \Delta T)\]
where, \[l'\] is the expanded length of the solid during change in temperature \[\Delta T\] , \[{l_0}\] is the initial length and \[\alpha \] is the expansion coefficient.
The volume expansion of any solid,
\[V' = {V_0}(1 + \gamma \Delta T)\]
where, \[V'\]is the expanded volume of the solid during change in temperature \[\Delta T\] , \[{V_0}\] is the initial length and \[\gamma \] is the expansion coefficient.
Complete step by step answer:
We have here an anisotropic solid and we have to find the relation between the coefficient of volume expansion and the coefficient of linear expansion. Now, since anisotropic solids stretch in length in different directions.
So, let the change in length along different axes are,
Change along the x axis: \[{l_x}' = {l_{x0}}(1 + {\alpha _x}\Delta T)\]
Change along the y axis: \[{l_y}' = {l_{y0}}(1 + {\alpha _y}\Delta T)\]
Change along the z axis: \[{l_z}' = {l_{z0}}(1 + {\alpha _z}\Delta T)\]
So, multiplying this three equations we will have,
\[{l_x}'{l_y}'{l_z}' = {l_{z0}}(1 + {\alpha _z}\Delta T){l_{y0}}(1 + {\alpha _y}\Delta T){l_{x0}}(1 + {\alpha _x}\Delta T)\]
Or, \[{l_x}'{l_y}'{l_z}' = {l_{z0}}{l_{y0}}{l_{x0}}(1 + {\alpha _z}\Delta T)(1 + {\alpha _y}\Delta T)(1 + {\alpha _x}\Delta T)\]
Now, neglecting the higher order terms of \[\alpha \] (since the dimension of \[\alpha \]is very small so, \[{\alpha ^2},{\alpha ^3} < < \alpha \])
We will have,
\[{l_x}'{l_y}'{l_z}' = {l_{z0}}{l_{y0}}{l_{x0}}[1 + ({\alpha _x} + {\alpha _y} + {\alpha _z})\Delta T]\]
Now, the \[{l_x}'{l_y}'{l_z}'\] is equal to the volume after the change and \[{l_{z0}}{l_{y0}}{l_{x0}}\] is the initial volume.
So, replacing them we will have,
\[V' = {V_0}[1 + ({\alpha _x} + {\alpha _y} + {\alpha _z})\Delta T]\]
Now, we know that the volume expansion of any solid,
\[V' = {V_0}(1 + \gamma \Delta T)\]
where, \[V'\] is the expanded volume of the solid during change in temperature \[\Delta T\] , \[{V_0}\] is the initial length and \[\gamma \] is the volume expansion coefficient.
So, comparing these two equations we can write,
\[\therefore \gamma = ({\alpha _x} + {\alpha _y} + {\alpha _z})\]
Hence, the coefficient of volume expansion of anisotropic solid to linear expansion of is given by \[({\alpha _x} + {\alpha _y} + {\alpha _z})\]
Hence, option B is the correct answer.
Note: The relation of coefficient of volume expansion and linear expansion for different types of solid is different. Here, we can see that for anisotropic solid it is different in different direction but for isotropic solid it is same in every direction for that we will have the relation as, \[\gamma = 3{\alpha _x} = 3{\alpha _y} = 3{\alpha _z}\].
Formula used:
The linear expansion of any solid is given by,
\[l' = {l_0}(1 + \alpha \Delta T)\]
where, \[l'\] is the expanded length of the solid during change in temperature \[\Delta T\] , \[{l_0}\] is the initial length and \[\alpha \] is the expansion coefficient.
The volume expansion of any solid,
\[V' = {V_0}(1 + \gamma \Delta T)\]
where, \[V'\]is the expanded volume of the solid during change in temperature \[\Delta T\] , \[{V_0}\] is the initial length and \[\gamma \] is the expansion coefficient.
Complete step by step answer:
We have here an anisotropic solid and we have to find the relation between the coefficient of volume expansion and the coefficient of linear expansion. Now, since anisotropic solids stretch in length in different directions.
So, let the change in length along different axes are,
Change along the x axis: \[{l_x}' = {l_{x0}}(1 + {\alpha _x}\Delta T)\]
Change along the y axis: \[{l_y}' = {l_{y0}}(1 + {\alpha _y}\Delta T)\]
Change along the z axis: \[{l_z}' = {l_{z0}}(1 + {\alpha _z}\Delta T)\]
So, multiplying this three equations we will have,
\[{l_x}'{l_y}'{l_z}' = {l_{z0}}(1 + {\alpha _z}\Delta T){l_{y0}}(1 + {\alpha _y}\Delta T){l_{x0}}(1 + {\alpha _x}\Delta T)\]
Or, \[{l_x}'{l_y}'{l_z}' = {l_{z0}}{l_{y0}}{l_{x0}}(1 + {\alpha _z}\Delta T)(1 + {\alpha _y}\Delta T)(1 + {\alpha _x}\Delta T)\]
Now, neglecting the higher order terms of \[\alpha \] (since the dimension of \[\alpha \]is very small so, \[{\alpha ^2},{\alpha ^3} < < \alpha \])
We will have,
\[{l_x}'{l_y}'{l_z}' = {l_{z0}}{l_{y0}}{l_{x0}}[1 + ({\alpha _x} + {\alpha _y} + {\alpha _z})\Delta T]\]
Now, the \[{l_x}'{l_y}'{l_z}'\] is equal to the volume after the change and \[{l_{z0}}{l_{y0}}{l_{x0}}\] is the initial volume.
So, replacing them we will have,
\[V' = {V_0}[1 + ({\alpha _x} + {\alpha _y} + {\alpha _z})\Delta T]\]
Now, we know that the volume expansion of any solid,
\[V' = {V_0}(1 + \gamma \Delta T)\]
where, \[V'\] is the expanded volume of the solid during change in temperature \[\Delta T\] , \[{V_0}\] is the initial length and \[\gamma \] is the volume expansion coefficient.
So, comparing these two equations we can write,
\[\therefore \gamma = ({\alpha _x} + {\alpha _y} + {\alpha _z})\]
Hence, the coefficient of volume expansion of anisotropic solid to linear expansion of is given by \[({\alpha _x} + {\alpha _y} + {\alpha _z})\]
Hence, option B is the correct answer.
Note: The relation of coefficient of volume expansion and linear expansion for different types of solid is different. Here, we can see that for anisotropic solid it is different in different direction but for isotropic solid it is same in every direction for that we will have the relation as, \[\gamma = 3{\alpha _x} = 3{\alpha _y} = 3{\alpha _z}\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE