Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

For any vector r, prove that r=(r.i)i+(r.j)j+(r.k)k.

Answer
VerifiedVerified
534k+ views
like imagedislike image
Hint: To prove the given problem we have to take the standard equation of vector ri.e., r=xi+yj+zk. So, use this concept to reach the solution of the given problem.

Complete step-by-step answer:
Given r=(r.i)i+(r.j)j+(r.k)k..................................................(1)
Let r=xi+yj+zk............................................................(2)
From equation (1) and (2) we have
r=((xi+yj+zk).i)i+((xi+yj+zk).j)j+((xi+yj+zk).k)k
Now first consider r=((xi+yj+zk).i)i
r=(xi.i+yj.i+zk.i)i
By using the formulae i.i=1 , j.i=0 and k.i=0 we have
r=(x(1)+y(0)+z(0))i=xi
Then consider r=((xi+yj+zk).j)j
r=(xi.j+yj.j+zk.j)j
By using the formulae i.j=0 , j.j=1 and k.j=0 we have
r=(x(0)+y(1)+z(0))j=yj
Next consider r=((xi+yj+zk).k)k
r=(xi.k+yj.k+zk.k)k
By using the formulae i.k=0 , j.k=0 and k.k=1
r=(x(0)+y(1)+z(1))k=zk
Using the above information, we have
r=((xi+yj+zk).i)i+((xi+yj+zk).j)j+((xi+yj+zk).k)k equals to
r=xi+yj+zk...........................................(3)
From equations (2) and (3) we can conclude that
r=(r.i)i+(r.j)j+(r.k)k
Hence proved.

Note: Here we have used dot products of vectors. The formulae which are used in the solution are
 i.i=1 , i.j=0 and i.k=0j.i=0 , j.j=1 and j.k=0i.k=0 , j.k=0 and k.k=1