Answer
Verified
487.2k+ views
Hint: To prove the given problem we have to take the standard equation of vector \[\overrightarrow r \]i.e., \[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge \]. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given \[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge ..................................................\left( 1 \right)\]
Let \[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ............................................................\left( 2 \right)\]
From equation (1) and (2) we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Now first consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop i\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop i\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 1 \right) + y\left( 0 \right) + z\left( 0 \right)} \right)\mathop i\limits^ \wedge = x\mathop i\limits^ \wedge \]
Then consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop j\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop j\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop k\limits^ \wedge .\mathop j\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 0 \right)} \right)\mathop j\limits^ \wedge = y\mathop j\limits^ \wedge \]
Next consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop k\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop k\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1\]
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 1 \right)} \right)\mathop k\limits^ \wedge = z\mathop k\limits^ \wedge \]
Using the above information, we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \] equals to
\[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ...........................................\left( 3 \right)\]
From equations (2) and (3) we can conclude that
\[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Hence proved.
Note: Here we have used dot products of vectors. The formulae which are used in the solution are
\[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop i\limits^ \wedge . \mathop j\limits^ \wedge = 0{\text{ and }}\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1 \\
\]
Complete step-by-step answer:
Given \[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge ..................................................\left( 1 \right)\]
Let \[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ............................................................\left( 2 \right)\]
From equation (1) and (2) we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Now first consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop i\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop i\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 1 \right) + y\left( 0 \right) + z\left( 0 \right)} \right)\mathop i\limits^ \wedge = x\mathop i\limits^ \wedge \]
Then consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop j\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop j\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop k\limits^ \wedge .\mathop j\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 0 \right)} \right)\mathop j\limits^ \wedge = y\mathop j\limits^ \wedge \]
Next consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop k\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop k\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1\]
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 1 \right)} \right)\mathop k\limits^ \wedge = z\mathop k\limits^ \wedge \]
Using the above information, we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \] equals to
\[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ...........................................\left( 3 \right)\]
From equations (2) and (3) we can conclude that
\[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Hence proved.
Note: Here we have used dot products of vectors. The formulae which are used in the solution are
\[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop i\limits^ \wedge . \mathop j\limits^ \wedge = 0{\text{ and }}\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1 \\
\]
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE