For any vector \[\overrightarrow r \], prove that \[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \].
Answer
Verified
505.8k+ views
Hint: To prove the given problem we have to take the standard equation of vector \[\overrightarrow r \]i.e., \[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge \]. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given \[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge ..................................................\left( 1 \right)\]
Let \[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ............................................................\left( 2 \right)\]
From equation (1) and (2) we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Now first consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop i\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop i\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 1 \right) + y\left( 0 \right) + z\left( 0 \right)} \right)\mathop i\limits^ \wedge = x\mathop i\limits^ \wedge \]
Then consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop j\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop j\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop k\limits^ \wedge .\mathop j\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 0 \right)} \right)\mathop j\limits^ \wedge = y\mathop j\limits^ \wedge \]
Next consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop k\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop k\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1\]
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 1 \right)} \right)\mathop k\limits^ \wedge = z\mathop k\limits^ \wedge \]
Using the above information, we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \] equals to
\[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ...........................................\left( 3 \right)\]
From equations (2) and (3) we can conclude that
\[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Hence proved.
Note: Here we have used dot products of vectors. The formulae which are used in the solution are
\[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop i\limits^ \wedge . \mathop j\limits^ \wedge = 0{\text{ and }}\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1 \\
\]
Complete step-by-step answer:
Given \[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge ..................................................\left( 1 \right)\]
Let \[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ............................................................\left( 2 \right)\]
From equation (1) and (2) we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Now first consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop i\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop i\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 1 \right) + y\left( 0 \right) + z\left( 0 \right)} \right)\mathop i\limits^ \wedge = x\mathop i\limits^ \wedge \]
Then consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop j\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop j\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop k\limits^ \wedge .\mathop j\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 0 \right)} \right)\mathop j\limits^ \wedge = y\mathop j\limits^ \wedge \]
Next consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop k\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop k\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1\]
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 1 \right)} \right)\mathop k\limits^ \wedge = z\mathop k\limits^ \wedge \]
Using the above information, we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \] equals to
\[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ...........................................\left( 3 \right)\]
From equations (2) and (3) we can conclude that
\[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Hence proved.
Note: Here we have used dot products of vectors. The formulae which are used in the solution are
\[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop i\limits^ \wedge . \mathop j\limits^ \wedge = 0{\text{ and }}\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1 \\
\]
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
Distinguish between asexual and sexual reproduction class 12 biology CBSE
How do you convert from joules to electron volts class 12 physics CBSE
Derive mirror equation State any three experimental class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE