Answer
Verified
496.5k+ views
Hint: To prove the given problem we have to take the standard equation of vector \[\overrightarrow r \]i.e., \[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge \]. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given \[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge ..................................................\left( 1 \right)\]
Let \[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ............................................................\left( 2 \right)\]
From equation (1) and (2) we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Now first consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop i\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop i\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 1 \right) + y\left( 0 \right) + z\left( 0 \right)} \right)\mathop i\limits^ \wedge = x\mathop i\limits^ \wedge \]
Then consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop j\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop j\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop k\limits^ \wedge .\mathop j\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 0 \right)} \right)\mathop j\limits^ \wedge = y\mathop j\limits^ \wedge \]
Next consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop k\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop k\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1\]
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 1 \right)} \right)\mathop k\limits^ \wedge = z\mathop k\limits^ \wedge \]
Using the above information, we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \] equals to
\[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ...........................................\left( 3 \right)\]
From equations (2) and (3) we can conclude that
\[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Hence proved.
Note: Here we have used dot products of vectors. The formulae which are used in the solution are
\[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop i\limits^ \wedge . \mathop j\limits^ \wedge = 0{\text{ and }}\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1 \\
\]
Complete step-by-step answer:
Given \[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge ..................................................\left( 1 \right)\]
Let \[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ............................................................\left( 2 \right)\]
From equation (1) and (2) we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Now first consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop i\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop i\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 1 \right) + y\left( 0 \right) + z\left( 0 \right)} \right)\mathop i\limits^ \wedge = x\mathop i\limits^ \wedge \]
Then consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop j\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop j\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop k\limits^ \wedge .\mathop j\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 0 \right)} \right)\mathop j\limits^ \wedge = y\mathop j\limits^ \wedge \]
Next consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop k\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop k\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1\]
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 1 \right)} \right)\mathop k\limits^ \wedge = z\mathop k\limits^ \wedge \]
Using the above information, we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \] equals to
\[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ...........................................\left( 3 \right)\]
From equations (2) and (3) we can conclude that
\[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Hence proved.
Note: Here we have used dot products of vectors. The formulae which are used in the solution are
\[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop i\limits^ \wedge . \mathop j\limits^ \wedge = 0{\text{ and }}\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1 \\
\]
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE