
For given figures find the value of x , where the diagonals are in terms of x.
(i). In Fig. (a), \[AB\parallel CD,\] find the value of x.
(ii). In Fig. (b), \[AB\parallel CD,\] find the value of x.
(iii). In Fig. (c), \[AB\parallel CD,\] if $OA = 3x - 19,OB = x - 4,OC = x - 3$ and $OD = 4,$ find x.
Answer
591.3k+ views
Hint- A quadrilateral with one pair of parallel sides is a trapezium. In each part of this question, the given 4-sided figure is a trapezium. Use the property of trapezium, diagonals of trapezium divide each other proportionally. Simply find the value of x by simplifying the equations so obtained.
Complete step-by-step solution -
(i) In fig (a), Given \[AB\parallel CD,\]
So, ABCD is a trapezium.
Since, diagonals of trapezium divide each other proportionally that’s why AC and BD divide each other proportionally.
$ \Rightarrow \dfrac{{AO}}{{CO}} = \dfrac{{BO}}{{DO}}$
Now, substitute the values of AO, CO, BO and DO
$ \Rightarrow \dfrac{{2x + 4}}{{x + 1}} = \dfrac{{4x - 2}}{4}$
On cross multiplying we get,
$ \Rightarrow 4(2x + 4) = (4x - 2)(x + 1)$
$ \Rightarrow 8x + 16 = 4{x^2} + 2x - 2$
$ \Rightarrow 0 = 4{x^2} + 2x - 8x - 2 - 16$
$ \Rightarrow 0 = 4{x^2} - 6x - 18$
or, $4{x^2} - 6x - 18 = 0$ …………………………. (a)
$ \Rightarrow (x - 3)(2x + 3) = 0$
$\therefore $ $x = 3$ or $x = \dfrac{{ - 3}}{2}$
Hence, the value of x = 3 or $x = \dfrac{{ - 3}}{2}$
(ii) In fig (b), Given \[AB\parallel CD,\]
So, ABCD is a trapezium.
Since, diagonals of trapezium divide each other proportionally that’s why AC and BD divide each other proportionally.
$ \Rightarrow \dfrac{{AO}}{{CO}} = \dfrac{{BO}}{{DO}}$
Now, substitute the values of AO, CO, BO and DO
$ \Rightarrow \dfrac{{3x - 1}}{{5x - 3}} = \dfrac{{2x + 1}}{{6x - 5}}$
On cross multiplying we get,
$ \Rightarrow (6x - 5)(3x - 1) = (2x + 1)(5x - 3)$
$ \Rightarrow 18{x^2} - 21x + 5 = 10{x^2} - x - 3$
$ \Rightarrow 18{x^2} - 10{x^2} - 21x + x + 5 + 3 = 0$
$ \Rightarrow 8{x^2} - 20x + 8 = 0$
or, $2{x^2} - 5x + 2 = 0$ ………………………….. (b)
$ \Rightarrow (x - 2)(2x - 1) = 0$
$\therefore $ $x = 2$ or $x = \dfrac{1}{2}$
Hence, the value of x = 2 or $x = \dfrac{1}{2}$
(iii) In fig (c), Given \[AB\parallel CD,\]
So, ABCD is a trapezium.
Since, diagonals of trapezium divide each other proportionally that’s why AC and BD divide each other proportionally.
$ \Rightarrow \dfrac{{AO}}{{CO}} = \dfrac{{BO}}{{DO}}$
Now, substitute the values of AO, CO, BO and DO
$ \Rightarrow \dfrac{{3x - 19}}{{x - 3}} = \dfrac{{x - 4}}{4}$
On cross multiplying we get,
$ \Rightarrow 4 \times (3x - 19) = (x - 4)(x - 3)$
$ \Rightarrow 12x - 76 = {x^2} - 7x + 12$
$ \Rightarrow {x^2} - 19x + 88 = 0$
$ \Rightarrow (x - 8)(x - 11) = 0$ ……………………………….. (c)
$\therefore $ $x = 8$ or $x = 11$
Hence, the value of x = 8 or $x = 11$
Note- In such types of questions, just keep in mind the basic proportionality of diagonal components in a trapezium and also solving the quadratic equation so obtained by using the splitting the middle term method, completing the square method or discriminant method.
Complete step-by-step solution -
(i) In fig (a), Given \[AB\parallel CD,\]
So, ABCD is a trapezium.
Since, diagonals of trapezium divide each other proportionally that’s why AC and BD divide each other proportionally.
$ \Rightarrow \dfrac{{AO}}{{CO}} = \dfrac{{BO}}{{DO}}$
Now, substitute the values of AO, CO, BO and DO
$ \Rightarrow \dfrac{{2x + 4}}{{x + 1}} = \dfrac{{4x - 2}}{4}$
On cross multiplying we get,
$ \Rightarrow 4(2x + 4) = (4x - 2)(x + 1)$
$ \Rightarrow 8x + 16 = 4{x^2} + 2x - 2$
$ \Rightarrow 0 = 4{x^2} + 2x - 8x - 2 - 16$
$ \Rightarrow 0 = 4{x^2} - 6x - 18$
or, $4{x^2} - 6x - 18 = 0$ …………………………. (a)
$ \Rightarrow (x - 3)(2x + 3) = 0$
$\therefore $ $x = 3$ or $x = \dfrac{{ - 3}}{2}$
Hence, the value of x = 3 or $x = \dfrac{{ - 3}}{2}$
(ii) In fig (b), Given \[AB\parallel CD,\]
So, ABCD is a trapezium.
Since, diagonals of trapezium divide each other proportionally that’s why AC and BD divide each other proportionally.
$ \Rightarrow \dfrac{{AO}}{{CO}} = \dfrac{{BO}}{{DO}}$
Now, substitute the values of AO, CO, BO and DO
$ \Rightarrow \dfrac{{3x - 1}}{{5x - 3}} = \dfrac{{2x + 1}}{{6x - 5}}$
On cross multiplying we get,
$ \Rightarrow (6x - 5)(3x - 1) = (2x + 1)(5x - 3)$
$ \Rightarrow 18{x^2} - 21x + 5 = 10{x^2} - x - 3$
$ \Rightarrow 18{x^2} - 10{x^2} - 21x + x + 5 + 3 = 0$
$ \Rightarrow 8{x^2} - 20x + 8 = 0$
or, $2{x^2} - 5x + 2 = 0$ ………………………….. (b)
$ \Rightarrow (x - 2)(2x - 1) = 0$
$\therefore $ $x = 2$ or $x = \dfrac{1}{2}$
Hence, the value of x = 2 or $x = \dfrac{1}{2}$
(iii) In fig (c), Given \[AB\parallel CD,\]
So, ABCD is a trapezium.
Since, diagonals of trapezium divide each other proportionally that’s why AC and BD divide each other proportionally.
$ \Rightarrow \dfrac{{AO}}{{CO}} = \dfrac{{BO}}{{DO}}$
Now, substitute the values of AO, CO, BO and DO
$ \Rightarrow \dfrac{{3x - 19}}{{x - 3}} = \dfrac{{x - 4}}{4}$
On cross multiplying we get,
$ \Rightarrow 4 \times (3x - 19) = (x - 4)(x - 3)$
$ \Rightarrow 12x - 76 = {x^2} - 7x + 12$
$ \Rightarrow {x^2} - 19x + 88 = 0$
$ \Rightarrow (x - 8)(x - 11) = 0$ ……………………………….. (c)
$\therefore $ $x = 8$ or $x = 11$
Hence, the value of x = 8 or $x = 11$
Note- In such types of questions, just keep in mind the basic proportionality of diagonal components in a trapezium and also solving the quadratic equation so obtained by using the splitting the middle term method, completing the square method or discriminant method.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

