Answer
Verified
468.3k+ views
Hint: The adiabatic expansion is the one which will not involve transfer of mass or heat between the system and its surroundings.
For an adiabatic expansion of an ideal gas,
$P{V^\Upsilon }$ = constant
Where $\Upsilon = \dfrac{{{C_P}}}{{{C_V}}}$
The ideal gas equation is PV = nRT
Where n is the number of moles of gas.
For n=1 i.e. for one mole of gas,
PV = RT
Complete step by step answer:
The first thing we need to understand is the adiabatic process.
An Adiabatic process is the one in which there is no transfer of heat or mass between the thermodynamic system and surroundings. The energy is transferred in the form of work.
The expansion of a gas is directly related to temperature according to Charlie’s law. The gas expands with lowering in the temperature.
For the adiabatic expansion of a gas, the first law can be written as-
\[\partial U = - PdV\]
Let it be equation 1.
Further, we have ${C_V} = {\left( {\dfrac{{\partial U}}{{\partial T}}} \right)_V}$
Let it be equation 2.
As we have assumed ideal gas and we know in ideal gas there are no intermolecular forces. Thus, internal energy of gas will depend only on temperature. Volume has nothing to do with it.
So, we can write the above equation 2 as-
${C_V} = \left( {\dfrac{{\partial U}}{{\partial T}}} \right)$
On rearranging, we can write- $dU = {C_V}dT$
From equation 1, we have \[\partial U = - PdV\].
Thus, \[{C_V}dT = - PdV\]
Let it be equation 3.
Further, the ideal gas equation is PV = nRT
Where n is number of moles of gas.
For n=1 i.e. one mole of gas,
PV = RT
Substituting it in equation 3, we have
\[\begin{gathered}
PV = RT = ({C_P} - {C_V})T \\
P = \dfrac{{({C_P} - {C_V})T}}{V} \\
\end{gathered} \]
Let it be equation 4.
From equation 3, we can write
\[P = - \dfrac{{{C_V}dT}}{{{dV}}}\]
Substituting it in equation 4.
\[- \dfrac{{{C_V}dT}}{{{dV}}} = \dfrac{{{C_P}-{C_V}T}}{{{V}}}\]
Rearranging it, we get ${C_V}dT = - ({C_P} - {C_V})\dfrac{{TdV}}{V}$
Let, \[\dfrac{{{C_P}}}{{{C_V}}} = \Upsilon \]
Now, we will separate the variables and fill the above value.
We have, \[\dfrac{{dT}}{T} + (\Upsilon - 1)\dfrac{{dV}}{V}\] = 0
On integrating the equation,
$T{V^{\Upsilon - 1}}$ = constant
Let it be equation 5.
Thus, option b.) is the correct answer.
Further, we have $\dfrac{{PV}}{T}$ = constant
Let it be equation 6.
On putting value of T from equation 5 in equation 6, we have
$P{V^\Upsilon }$ = constant
Thus, option a.) is the correct answer.
We have ideal gas equation for one mole, PV = RT
Substituting above, we can get
$T{P^{1 - \Upsilon }}$ = constant
Thus, option c.) is also the correct answer.
So, we can say that our answer will be option d.) i.e. All of the above.
Note: The ideal gas we talk about is not the real concept. It is an hypothetical concept. Ideal gas refers to the gas in which molecules occupy negligible space and zero forces of interactions. Further, the ideal gas obeys all the gas laws without a little deviation.
A very good example of adiabatic process can be the flow of air vertically in the atmosphere. The air in our atmosphere rises up. As it rises, it expands and the temperature is lowered.
The negative sign in equation 3 means that volume is increasing with decrease in temperature.
For an adiabatic expansion of an ideal gas,
$P{V^\Upsilon }$ = constant
Where $\Upsilon = \dfrac{{{C_P}}}{{{C_V}}}$
The ideal gas equation is PV = nRT
Where n is the number of moles of gas.
For n=1 i.e. for one mole of gas,
PV = RT
Complete step by step answer:
The first thing we need to understand is the adiabatic process.
An Adiabatic process is the one in which there is no transfer of heat or mass between the thermodynamic system and surroundings. The energy is transferred in the form of work.
The expansion of a gas is directly related to temperature according to Charlie’s law. The gas expands with lowering in the temperature.
For the adiabatic expansion of a gas, the first law can be written as-
\[\partial U = - PdV\]
Let it be equation 1.
Further, we have ${C_V} = {\left( {\dfrac{{\partial U}}{{\partial T}}} \right)_V}$
Let it be equation 2.
As we have assumed ideal gas and we know in ideal gas there are no intermolecular forces. Thus, internal energy of gas will depend only on temperature. Volume has nothing to do with it.
So, we can write the above equation 2 as-
${C_V} = \left( {\dfrac{{\partial U}}{{\partial T}}} \right)$
On rearranging, we can write- $dU = {C_V}dT$
From equation 1, we have \[\partial U = - PdV\].
Thus, \[{C_V}dT = - PdV\]
Let it be equation 3.
Further, the ideal gas equation is PV = nRT
Where n is number of moles of gas.
For n=1 i.e. one mole of gas,
PV = RT
Substituting it in equation 3, we have
\[\begin{gathered}
PV = RT = ({C_P} - {C_V})T \\
P = \dfrac{{({C_P} - {C_V})T}}{V} \\
\end{gathered} \]
Let it be equation 4.
From equation 3, we can write
\[P = - \dfrac{{{C_V}dT}}{{{dV}}}\]
Substituting it in equation 4.
\[- \dfrac{{{C_V}dT}}{{{dV}}} = \dfrac{{{C_P}-{C_V}T}}{{{V}}}\]
Rearranging it, we get ${C_V}dT = - ({C_P} - {C_V})\dfrac{{TdV}}{V}$
Let, \[\dfrac{{{C_P}}}{{{C_V}}} = \Upsilon \]
Now, we will separate the variables and fill the above value.
We have, \[\dfrac{{dT}}{T} + (\Upsilon - 1)\dfrac{{dV}}{V}\] = 0
On integrating the equation,
$T{V^{\Upsilon - 1}}$ = constant
Let it be equation 5.
Thus, option b.) is the correct answer.
Further, we have $\dfrac{{PV}}{T}$ = constant
Let it be equation 6.
On putting value of T from equation 5 in equation 6, we have
$P{V^\Upsilon }$ = constant
Thus, option a.) is the correct answer.
We have ideal gas equation for one mole, PV = RT
Substituting above, we can get
$T{P^{1 - \Upsilon }}$ = constant
Thus, option c.) is also the correct answer.
So, we can say that our answer will be option d.) i.e. All of the above.
Note: The ideal gas we talk about is not the real concept. It is an hypothetical concept. Ideal gas refers to the gas in which molecules occupy negligible space and zero forces of interactions. Further, the ideal gas obeys all the gas laws without a little deviation.
A very good example of adiabatic process can be the flow of air vertically in the atmosphere. The air in our atmosphere rises up. As it rises, it expands and the temperature is lowered.
The negative sign in equation 3 means that volume is increasing with decrease in temperature.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE