Answer
Verified
394.8k+ views
Hint: Gibbs free energy: It is a thermodynamic potential which is used to determine the maximum work done by the system at constant pressure and temperature. It is also used to determine the spontaneity of the reaction i.e.; it determines the extent of formation of product during the chemical reaction.
Complete answer:
For a reaction at equilibrium, the rate of forward reaction is equivalent to the rate of backward reaction. So, if the change in Gibbs free energy for forward reaction is \[G\]. Then the change in Gibbs free energy for backward reaction will be \[ - G\]. Therefore, total change in Gibbs free energy for overall reaction will be as follows:
\[{\Delta _r}{G^ \circ }_{eq.} = G + ( - G)\]
\[\therefore {\Delta _r}{G^ \circ }_{eq.} = 0\]
Hence, the change in Gibbs free energy at equilibrium is zero.
According to the given conditions, change in Gibbs free energy depends on temperature as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
At equilibrium,
\[120 - \dfrac{3}{8}T = 0\]
\[ \Rightarrow 3T = 960\]
\[ \Rightarrow T = 320\,K\]
Now, as per options given:
If \[T = 315K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 315\]
\[ \Rightarrow 120 - 118.13\]
\[ \Rightarrow 1.87\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is positive which indicates that the reaction is nonspontaneous. Therefore, the major component of the reaction will be \[X\] at temperature \[T = 315K\].
If \[T = 350K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 350\]
\[ \Rightarrow 120 - 131.25\]
\[ \Rightarrow - 11.25\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is negative which indicates that the reaction is spontaneous. Therefore, the major component of the reaction will be \[Y\] at temperature \[T = 350K\].
If \[T = 300K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 300\]
\[ \Rightarrow 120 - 112.5\]
\[ \Rightarrow 7.5\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is positive which indicates that the reaction is nonspontaneous. Therefore, the major component of the reaction will be \[X\] at temperature \[T = 300K\].
If \[T = 280K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 280\]
\[ \Rightarrow 120 - 105\]
\[ \Rightarrow 15\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is positive which indicates that the reaction is nonspontaneous. Therefore, the major component of the reaction will be \[X\] at temperature \[T = 280K\].
Hence, options (a) and (b) are correct.
Note:
Spontaneous reaction: It is a chemical reaction which favours the formation of products at a particular temperature. Change in Gibbs free energy i.e., \[\Delta G < 0\] is the mandatory condition for a reaction to be spontaneous.
Non-spontaneous reaction: It is a chemical reaction which does not favour the formation of products for specific conditions. Hence, for these reactions the reactants are the major components.
Complete answer:
For a reaction at equilibrium, the rate of forward reaction is equivalent to the rate of backward reaction. So, if the change in Gibbs free energy for forward reaction is \[G\]. Then the change in Gibbs free energy for backward reaction will be \[ - G\]. Therefore, total change in Gibbs free energy for overall reaction will be as follows:
\[{\Delta _r}{G^ \circ }_{eq.} = G + ( - G)\]
\[\therefore {\Delta _r}{G^ \circ }_{eq.} = 0\]
Hence, the change in Gibbs free energy at equilibrium is zero.
According to the given conditions, change in Gibbs free energy depends on temperature as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
At equilibrium,
\[120 - \dfrac{3}{8}T = 0\]
\[ \Rightarrow 3T = 960\]
\[ \Rightarrow T = 320\,K\]
Now, as per options given:
If \[T = 315K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 315\]
\[ \Rightarrow 120 - 118.13\]
\[ \Rightarrow 1.87\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is positive which indicates that the reaction is nonspontaneous. Therefore, the major component of the reaction will be \[X\] at temperature \[T = 315K\].
If \[T = 350K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 350\]
\[ \Rightarrow 120 - 131.25\]
\[ \Rightarrow - 11.25\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is negative which indicates that the reaction is spontaneous. Therefore, the major component of the reaction will be \[Y\] at temperature \[T = 350K\].
If \[T = 300K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 300\]
\[ \Rightarrow 120 - 112.5\]
\[ \Rightarrow 7.5\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is positive which indicates that the reaction is nonspontaneous. Therefore, the major component of the reaction will be \[X\] at temperature \[T = 300K\].
If \[T = 280K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 280\]
\[ \Rightarrow 120 - 105\]
\[ \Rightarrow 15\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is positive which indicates that the reaction is nonspontaneous. Therefore, the major component of the reaction will be \[X\] at temperature \[T = 280K\].
Hence, options (a) and (b) are correct.
Note:
Spontaneous reaction: It is a chemical reaction which favours the formation of products at a particular temperature. Change in Gibbs free energy i.e., \[\Delta G < 0\] is the mandatory condition for a reaction to be spontaneous.
Non-spontaneous reaction: It is a chemical reaction which does not favour the formation of products for specific conditions. Hence, for these reactions the reactants are the major components.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE