
For the combination of resistors shown in the figure, find the equivalent resistance between (a) $C$ and $D$ (b) $A$ and $B$.
Answer
585.6k+ views
Hint: This problem can be solved by using the formulas for equivalent resistances for series and parallel combinations of resistances. For finding the equivalent resistance between two terminals, we have to find the equivalent resistance in all branches of the circuit between the two terminals.
Formula used:
${{R}_{equivalent,series}}=\sum\limits_{i=1}^{k}{{{R}_{i}}}$
$\dfrac{1}{{{R}_{equivalent,parallel}}}=\sum\limits_{i=1}^{k}{\dfrac{1}{{{R}_{i}}}}$
Complete step-by-step answer:
We will have to solve the problem by using the formulas for the equivalent resistances for series and parallel combinations for all the branches between the two given terminals.
The equivalent resistance ${{R}_{equivalent,series}}$ of $k$ resistances in series of individual resistances ${{R}_{i}}\left( i\in \left[ 1,k \right] \right)$ is given by
${{R}_{equivalent,series}}=\sum\limits_{i=1}^{k}{{{R}_{i}}}$ --(1)
The equivalent resistance ${{R}_{equivalent,parallel}}$ of $k$ resistances in parallel of individual resistances ${{R}_{i}}\left( i\in \left[ 1,k \right] \right)$ is given by
$\dfrac{1}{{{R}_{equivalent,parallel}}}=\sum\limits_{i=1}^{k}{\dfrac{1}{{{R}_{i}}}}$ --(2)
Here ${{R}_{1}}={{R}_{2}}={{R}_{3}}={{R}_{4}}={{R}_{5}}={{R}_{6}}=3\Omega $
(a) Equivalent resistance between $C$ and $D$ -
The branches connecting $C$ and $D$ are the two branches, one containing ${{R}_{5}}$ and the other containing resistors ${{R}_{2}},{{R}_{3}},{{R}_{4}}$.
The other branch that is the one having nodes $A$ and $B$ is a broken circuit. Hence, ${{R}_{1}},{{R}_{6}}$ are not considered for the equivalent resistance.
Therefore, the equivalent resistance is the parallel combination of the two branches, one containing ${{R}_{5}}$ and the other containing resistors ${{R}_{2}},{{R}_{3}},{{R}_{4}}$.
$\therefore {{R}_{CD}}={{R}_{2,3,4}}||{{R}_{5}}$ --(3)
Now, ${{R}_{2}},{{R}_{3}},{{R}_{4}}$ are in series. Therefore using (1) their equivalent will be
${{R}_{2,3,4}}={{R}_{2}}+{{R}_{3}}+{{R}_{4}}=3+3+3=9\Omega $ --(4)
Now, ${{R}_{2,3,4}}$ and ${{R}_{5}}$ are in parallel.
Therefore using (2), we get, the equivalent resistance between $C$ and $D$ as
$\dfrac{1}{{{R}_{CD}}}=\dfrac{1}{{{R}_{5}}}+\dfrac{1}{{{R}_{2,3,4}}}=\dfrac{1}{3}+\dfrac{1}{9}=\dfrac{3+1}{9}=\dfrac{4}{9}$
$\therefore {{R}_{CD}}=\dfrac{9}{4}=2.25\Omega $ --(5)
(b) Equivalent resistance between $A$ and $B$
For the equivalent resistance between $A$ and $B$, we see that $\left( {{R}_{1}} \right),\left( \left( {{R}_{2}}+{{R}_{3}}+{{R}_{4}} \right)||{{R}_{5}} \right),{{R}_{6}}$ are in series, where
${{R}_{2}}+{{R}_{3}}+{{R}_{4}}={{R}_{2,3,4}}$ is the series combination of
${{R}_{2}},{{R}_{3}},{{R}_{4}}$.
Therefore using (1), we get, the equivalent resistance between $A$ and $B$ as
${{R}_{AB}}={{R}_{1}}+\left( {{R}_{2,3,4}}||{{R}_{5}} \right)+{{R}_{6}}$
$\therefore {{R}_{AB}}=3+2.25+3=8.25\Omega $ [Using (3) and (5)]
$\therefore {{R}_{AB}}=8.25\Omega $
Note: Students should take care between which two terminals the equivalent resistance is being asked to find because as is evident from the above question, the equivalent resistance changes depending upon between which two terminals the equivalent resistance is being calculated. Sometimes questions are given in such a way that the student jumps to conclusions and starts to calculate the equivalent resistance between one set of terminals but the question actually asks for the equivalent resistance between a completely different set of terminals.
Formula used:
${{R}_{equivalent,series}}=\sum\limits_{i=1}^{k}{{{R}_{i}}}$
$\dfrac{1}{{{R}_{equivalent,parallel}}}=\sum\limits_{i=1}^{k}{\dfrac{1}{{{R}_{i}}}}$
Complete step-by-step answer:
We will have to solve the problem by using the formulas for the equivalent resistances for series and parallel combinations for all the branches between the two given terminals.
The equivalent resistance ${{R}_{equivalent,series}}$ of $k$ resistances in series of individual resistances ${{R}_{i}}\left( i\in \left[ 1,k \right] \right)$ is given by
${{R}_{equivalent,series}}=\sum\limits_{i=1}^{k}{{{R}_{i}}}$ --(1)
The equivalent resistance ${{R}_{equivalent,parallel}}$ of $k$ resistances in parallel of individual resistances ${{R}_{i}}\left( i\in \left[ 1,k \right] \right)$ is given by
$\dfrac{1}{{{R}_{equivalent,parallel}}}=\sum\limits_{i=1}^{k}{\dfrac{1}{{{R}_{i}}}}$ --(2)
Here ${{R}_{1}}={{R}_{2}}={{R}_{3}}={{R}_{4}}={{R}_{5}}={{R}_{6}}=3\Omega $
(a) Equivalent resistance between $C$ and $D$ -
The branches connecting $C$ and $D$ are the two branches, one containing ${{R}_{5}}$ and the other containing resistors ${{R}_{2}},{{R}_{3}},{{R}_{4}}$.
The other branch that is the one having nodes $A$ and $B$ is a broken circuit. Hence, ${{R}_{1}},{{R}_{6}}$ are not considered for the equivalent resistance.
Therefore, the equivalent resistance is the parallel combination of the two branches, one containing ${{R}_{5}}$ and the other containing resistors ${{R}_{2}},{{R}_{3}},{{R}_{4}}$.
$\therefore {{R}_{CD}}={{R}_{2,3,4}}||{{R}_{5}}$ --(3)
Now, ${{R}_{2}},{{R}_{3}},{{R}_{4}}$ are in series. Therefore using (1) their equivalent will be
${{R}_{2,3,4}}={{R}_{2}}+{{R}_{3}}+{{R}_{4}}=3+3+3=9\Omega $ --(4)
Now, ${{R}_{2,3,4}}$ and ${{R}_{5}}$ are in parallel.
Therefore using (2), we get, the equivalent resistance between $C$ and $D$ as
$\dfrac{1}{{{R}_{CD}}}=\dfrac{1}{{{R}_{5}}}+\dfrac{1}{{{R}_{2,3,4}}}=\dfrac{1}{3}+\dfrac{1}{9}=\dfrac{3+1}{9}=\dfrac{4}{9}$
$\therefore {{R}_{CD}}=\dfrac{9}{4}=2.25\Omega $ --(5)
(b) Equivalent resistance between $A$ and $B$
For the equivalent resistance between $A$ and $B$, we see that $\left( {{R}_{1}} \right),\left( \left( {{R}_{2}}+{{R}_{3}}+{{R}_{4}} \right)||{{R}_{5}} \right),{{R}_{6}}$ are in series, where
${{R}_{2}}+{{R}_{3}}+{{R}_{4}}={{R}_{2,3,4}}$ is the series combination of
${{R}_{2}},{{R}_{3}},{{R}_{4}}$.
Therefore using (1), we get, the equivalent resistance between $A$ and $B$ as
${{R}_{AB}}={{R}_{1}}+\left( {{R}_{2,3,4}}||{{R}_{5}} \right)+{{R}_{6}}$
$\therefore {{R}_{AB}}=3+2.25+3=8.25\Omega $ [Using (3) and (5)]
$\therefore {{R}_{AB}}=8.25\Omega $
Note: Students should take care between which two terminals the equivalent resistance is being asked to find because as is evident from the above question, the equivalent resistance changes depending upon between which two terminals the equivalent resistance is being calculated. Sometimes questions are given in such a way that the student jumps to conclusions and starts to calculate the equivalent resistance between one set of terminals but the question actually asks for the equivalent resistance between a completely different set of terminals.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

