Answer
Verified
505.2k+ views
Hint: Use the property of symmetric and skew symmetric matrices directly on the given matrix expression.
Given the matrix $A = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right)$
We know that the transpose of a matrix is obtained by switching the rows with its columns
$ \Rightarrow A' = \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right)$
A Symmetric matrix is the one in which the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }}A = A'\]
We need to prove $\left( {A + A'} \right)$is a symmetric matrix.
$A + A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (1)}}$
Also,${\left( {A + A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (2)}}$
From equations $(1)$and$(2)$ , we get ${\left( {A + A'} \right)^\prime } = \left( {A + A'} \right)$, which satisfies the above-mentioned condition of symmetric matrices.
Hence $\left( {A + A'} \right)$is a symmetric matrix.
A Skew symmetric matrix is the one in which the negative of the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }} - A = A'\]
We need to prove $\left( {A - A'} \right)$is a skew symmetric matrix.
$A - A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right){\text{ (3)}}$
Also,${\left( {A - A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right){\text{ (4)}}$
From equations $(3)$and$(4)$ , we get ${\left( {A - A'} \right)^\prime } = - \left( {A - A'} \right)$, which satisfies the above-mentioned condition of skew symmetric matrices.
Hence $\left( {A - A'} \right)$is a skew symmetric matrix verified.
Note: The above-mentioned results are true for all square matrices. Similarly using above results, it can be proved that a square matrix can be expressed as the sum of a symmetric and skew symmetric matrix.
Given the matrix $A = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right)$
We know that the transpose of a matrix is obtained by switching the rows with its columns
$ \Rightarrow A' = \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right)$
A Symmetric matrix is the one in which the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }}A = A'\]
We need to prove $\left( {A + A'} \right)$is a symmetric matrix.
$A + A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (1)}}$
Also,${\left( {A + A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (2)}}$
From equations $(1)$and$(2)$ , we get ${\left( {A + A'} \right)^\prime } = \left( {A + A'} \right)$, which satisfies the above-mentioned condition of symmetric matrices.
Hence $\left( {A + A'} \right)$is a symmetric matrix.
A Skew symmetric matrix is the one in which the negative of the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }} - A = A'\]
We need to prove $\left( {A - A'} \right)$is a skew symmetric matrix.
$A - A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right){\text{ (3)}}$
Also,${\left( {A - A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right){\text{ (4)}}$
From equations $(3)$and$(4)$ , we get ${\left( {A - A'} \right)^\prime } = - \left( {A - A'} \right)$, which satisfies the above-mentioned condition of skew symmetric matrices.
Hence $\left( {A - A'} \right)$is a skew symmetric matrix verified.
Note: The above-mentioned results are true for all square matrices. Similarly using above results, it can be proved that a square matrix can be expressed as the sum of a symmetric and skew symmetric matrix.
Recently Updated Pages
An aqueous solution containing liquid A M Wt 128 64 class null chemistry null
What is the mole ratio of benzene left PB0 150torr class null chemistry null
Which solution will show the maximum vapour pressure class null chemistry null
Mixture of volatile components A and B has total vapour class null chemistry null
256 g of sulphur in 100 g of CS2 has depression in class null chemistry null
The ratio of Delta Tf for K4left Feleft CN right6 right class null chemistry null
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE