Answer
Verified
487.5k+ views
Hint:First of all, use \[{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x\] and then use a trigonometric table to find the value of \[{{\operatorname{cosec}}^{-1}}\left( 2 \right)\]. Now use \[\cos \left( -\theta \right)=\cos \theta \] and again use the table to find the value of \[\cos \dfrac{\pi }{3}\]. Find the angle at which \[\sin \theta =\dfrac{1}{2}\] from the table or the value of \[{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\] to get the required answer.
Complete step-by-step answer:
In this question, we have to find the principal value of \[{{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right]\].
First of all, let us consider the expression given in the question,
\[E={{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right]\]
We know that, \[{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x\]. By using this in the above expression, we get,
\[E={{\sin }^{-1}}\left[ \cos \left( -2{{\operatorname{cosec}}^{-1}}2 \right) \right]....\left( i \right)\]
Now, let us draw the table for trigonometric ratios of general angles.
From the above table, we can see that,
\[\operatorname{cosec}\left( \dfrac{\pi }{6} \right)=2\]
\[\Rightarrow {{\operatorname{cosec}}^{-1}}\left( 2 \right)=\dfrac{\pi }{6}\]
So, by substituting the value of \[{{\operatorname{cosec}}^{-1}}\left( 2 \right)\] in the expression (i), we get,
\[E={{\sin }^{-1}}\left[ \cos \left( -2.\dfrac{\pi }{6} \right) \right]\]
\[E={{\sin }^{-1}}\left[ \cos \left( -\dfrac{\pi }{3} \right) \right]\]
We know that, \[\cos \left( -\theta \right)=\cos \theta \]. By using this in the above expression, we get,
\[E={{\sin }^{-1}}\left[ \cos \dfrac{\pi }{3} \right]\]
Now, from the trigonometric table, we can see that, \[\cos \dfrac{\pi }{3}=\dfrac{1}{2}\]. So, by substituting the value of \[\cos \dfrac{\pi }{3}\] in the above expression, we get,
\[E={{\sin }^{-1}}\left( \dfrac{1}{2} \right)....\left( ii \right)\]
Now we know that the range of principal value of \[{{\sin }^{-1}}\left( x \right)\] lies between \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
From the table of general trigonometric ratios, we get,
\[\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}\]
\[\Rightarrow {{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}\]
Now by substituting the value of \[{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\] in the expression (ii), we get,
\[E=\dfrac{\pi }{6}\]
Hence, we get the value of \[{{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right]\] as \[\dfrac{\pi }{6}\].
Note: In this question, students must take care that the value of the angle must lie in the range of \[{{\operatorname{cosec}}^{-1}}x\] which is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}\] and \[{{\sin }^{-1}}x\] which is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\] accordingly. Also, students can verify their answer by equating the given expression with \[\dfrac{\pi }{6}\] and taking sin on both sides and keep solving until LHS = RHS.
Complete step-by-step answer:
In this question, we have to find the principal value of \[{{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right]\].
First of all, let us consider the expression given in the question,
\[E={{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right]\]
We know that, \[{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x\]. By using this in the above expression, we get,
\[E={{\sin }^{-1}}\left[ \cos \left( -2{{\operatorname{cosec}}^{-1}}2 \right) \right]....\left( i \right)\]
Now, let us draw the table for trigonometric ratios of general angles.
From the above table, we can see that,
\[\operatorname{cosec}\left( \dfrac{\pi }{6} \right)=2\]
\[\Rightarrow {{\operatorname{cosec}}^{-1}}\left( 2 \right)=\dfrac{\pi }{6}\]
So, by substituting the value of \[{{\operatorname{cosec}}^{-1}}\left( 2 \right)\] in the expression (i), we get,
\[E={{\sin }^{-1}}\left[ \cos \left( -2.\dfrac{\pi }{6} \right) \right]\]
\[E={{\sin }^{-1}}\left[ \cos \left( -\dfrac{\pi }{3} \right) \right]\]
We know that, \[\cos \left( -\theta \right)=\cos \theta \]. By using this in the above expression, we get,
\[E={{\sin }^{-1}}\left[ \cos \dfrac{\pi }{3} \right]\]
Now, from the trigonometric table, we can see that, \[\cos \dfrac{\pi }{3}=\dfrac{1}{2}\]. So, by substituting the value of \[\cos \dfrac{\pi }{3}\] in the above expression, we get,
\[E={{\sin }^{-1}}\left( \dfrac{1}{2} \right)....\left( ii \right)\]
Now we know that the range of principal value of \[{{\sin }^{-1}}\left( x \right)\] lies between \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
From the table of general trigonometric ratios, we get,
\[\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}\]
\[\Rightarrow {{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}\]
Now by substituting the value of \[{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\] in the expression (ii), we get,
\[E=\dfrac{\pi }{6}\]
Hence, we get the value of \[{{\sin }^{-1}}\left[ \cos \left( 2{{\operatorname{cosec}}^{-1}}\left( -2 \right) \right) \right]\] as \[\dfrac{\pi }{6}\].
Note: In this question, students must take care that the value of the angle must lie in the range of \[{{\operatorname{cosec}}^{-1}}x\] which is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}\] and \[{{\sin }^{-1}}x\] which is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\] accordingly. Also, students can verify their answer by equating the given expression with \[\dfrac{\pi }{6}\] and taking sin on both sides and keep solving until LHS = RHS.
Recently Updated Pages
A ray of light passes through an equilateral prism class 12 physics JEE_Main
The size of the image of an object which is at infinity class 12 physics JEE_Main
When a glass slab is placed on a cross made on a sheet class 12 physics JEE_Main
Rays from Sun converge at a point 15 cm in front of class 12 physics JEE_Main
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Trending doubts
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Name the part of the electromagnetic spectrum which class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
Define quantitative pollutants class 12 biology CBSE
The largest irrigation canal in india is A Indira Gandhi class 12 social science CBSE
Which one of the following bases is not present in class 12 chemistry CBSE