Answer
Verified
463.2k+ views
Hint: The ratio of the depression can be determined by dividing the deflection values of the square cross section to the circular cross section. And by using the given information in the question the ratio of depression can be determined.
Useful formula:
The deflection of the beam is given by,
$\delta = \dfrac{{W{l^3}}}{{3EI}}$
Where, $\delta $ is the deflection of the beam, $W$ is the load given to the beam, $l$ is the length of the beam, $E$ is the Young’s modulus of the beam and $I$ is the moment of inertia.
Moment of inertia for rectangular beam is given by,
$I = \dfrac{{b{d^3}}}{{12}}$
Where, $I$ is the moment of inertia, $b$ is the breadth of the rectangle and $d$ is the depth of the rectangle.
Moment of inertia for square beam is given by,
$I = \dfrac{{{b^4}}}{{12}}$ (For square both the breadth and depth are same and in other words all sides are equal)
Where, $I$ is the moment of inertia and $b$ is the breadth of the square.
Moment of inertia for circular beam is given by,
$I = \dfrac{{\pi {r^4}}}{4}$
Where, $I$ is the moment of inertia and $r$ is the radius of the circular beam.
Complete step by step solution:
Given that,
Both the rectangular beam and the circular beam have the same cross section.
Now,
The deflection of the square beam is given by,
${\delta _1} = \dfrac{{W{l^3}}}{{3EI}}\,..................\left( 1 \right)$
Here, ${\delta _1}$ is the deflection in the square cross section beam.
By substituting the moment of inertia value for square cross section in the equation (1), then
${\delta _1} = \dfrac{{W{l^3}}}{{3E \times \left( {\dfrac{{{b^4}}}{{12}}} \right)}}$
By rearranging the terms in the above equation, then
${\delta _1} = \dfrac{{W{l^3} \times 12}}{{3E \times {b^4}}}\,....................\left( 2 \right)$
The deflection of the circular beam is given by,
${\delta _2} = \dfrac{{W{l^3}}}{{3EI}}\,..................\left( 1 \right)$
Here, ${\delta _2}$ is the deflection in the circular cross section beam.
By substituting the moment of inertia value for circular beam in the equation (1), then
${\delta _2} = \dfrac{{W{l^3}}}{{3E \times \left( {\dfrac{{\pi {r^4}}}{4}} \right)}}$
By rearranging the terms in the above equation, then
${\delta _2} = \dfrac{{W{l^3} \times 4}}{{3E \times \pi {r^4}}}\,....................\left( 3 \right)$
On dividing the equation (2) and equation (3), then
\[\dfrac{{{\delta _1}}}{{{\delta _2}}} = \dfrac{{\left( {\dfrac{{W{l^3} \times 12}}{{3E \times {b^4}}}} \right)}}{{\left( {\dfrac{{W{l^3} \times 4}}{{3E \times \pi {r^4}}}} \right)}}\]
By cancelling the same terms, then
\[\dfrac{{{\delta _1}}}{{{\delta _2}}} = \dfrac{{\left( {\dfrac{{12}}{{{b^4}}}} \right)}}{{\left( {\dfrac{4}{{\pi {r^4}}}} \right)}}\]
By rearranging the terms, then
\[\dfrac{{{\delta _1}}}{{{\delta _2}}} = \dfrac{{12}}{{{b^4}}} \times \dfrac{{\pi {r^4}}}{4}\]
On further simplification, then
\[\dfrac{{{\delta _1}}}{{{\delta _2}}} = \dfrac{{3\pi {r^4}}}{{{b^4}}}\,..................\left( 4 \right)\]
Both the beam having same cross section, then $\left( {{b^2} = \pi {r^2}} \right)$, substituting the term in the above equation, then
\[\dfrac{{{\delta _1}}}{{{\delta _2}}} = \dfrac{{3\pi {r^4}}}{{{\pi ^2}{r^4}}}\]
By cancelling the same terms, then
\[\dfrac{{{\delta _1}}}{{{\delta _2}}} = \dfrac{3}{\pi }\]
Then the above equation is written as,
\[{\delta _1}:{\delta _2} = 3:\pi \]
Hence, the option (A) is the correct answer.
Note: Moment of inertia for the square cross section does not have a direct formula, it has been derived from the moment of inertia for the square cross section formula. In equation (4), both the beams have the same cross section area, so the assumption is taken for the simple calculation.
Useful formula:
The deflection of the beam is given by,
$\delta = \dfrac{{W{l^3}}}{{3EI}}$
Where, $\delta $ is the deflection of the beam, $W$ is the load given to the beam, $l$ is the length of the beam, $E$ is the Young’s modulus of the beam and $I$ is the moment of inertia.
Moment of inertia for rectangular beam is given by,
$I = \dfrac{{b{d^3}}}{{12}}$
Where, $I$ is the moment of inertia, $b$ is the breadth of the rectangle and $d$ is the depth of the rectangle.
Moment of inertia for square beam is given by,
$I = \dfrac{{{b^4}}}{{12}}$ (For square both the breadth and depth are same and in other words all sides are equal)
Where, $I$ is the moment of inertia and $b$ is the breadth of the square.
Moment of inertia for circular beam is given by,
$I = \dfrac{{\pi {r^4}}}{4}$
Where, $I$ is the moment of inertia and $r$ is the radius of the circular beam.
Complete step by step solution:
Given that,
Both the rectangular beam and the circular beam have the same cross section.
Now,
The deflection of the square beam is given by,
${\delta _1} = \dfrac{{W{l^3}}}{{3EI}}\,..................\left( 1 \right)$
Here, ${\delta _1}$ is the deflection in the square cross section beam.
By substituting the moment of inertia value for square cross section in the equation (1), then
${\delta _1} = \dfrac{{W{l^3}}}{{3E \times \left( {\dfrac{{{b^4}}}{{12}}} \right)}}$
By rearranging the terms in the above equation, then
${\delta _1} = \dfrac{{W{l^3} \times 12}}{{3E \times {b^4}}}\,....................\left( 2 \right)$
The deflection of the circular beam is given by,
${\delta _2} = \dfrac{{W{l^3}}}{{3EI}}\,..................\left( 1 \right)$
Here, ${\delta _2}$ is the deflection in the circular cross section beam.
By substituting the moment of inertia value for circular beam in the equation (1), then
${\delta _2} = \dfrac{{W{l^3}}}{{3E \times \left( {\dfrac{{\pi {r^4}}}{4}} \right)}}$
By rearranging the terms in the above equation, then
${\delta _2} = \dfrac{{W{l^3} \times 4}}{{3E \times \pi {r^4}}}\,....................\left( 3 \right)$
On dividing the equation (2) and equation (3), then
\[\dfrac{{{\delta _1}}}{{{\delta _2}}} = \dfrac{{\left( {\dfrac{{W{l^3} \times 12}}{{3E \times {b^4}}}} \right)}}{{\left( {\dfrac{{W{l^3} \times 4}}{{3E \times \pi {r^4}}}} \right)}}\]
By cancelling the same terms, then
\[\dfrac{{{\delta _1}}}{{{\delta _2}}} = \dfrac{{\left( {\dfrac{{12}}{{{b^4}}}} \right)}}{{\left( {\dfrac{4}{{\pi {r^4}}}} \right)}}\]
By rearranging the terms, then
\[\dfrac{{{\delta _1}}}{{{\delta _2}}} = \dfrac{{12}}{{{b^4}}} \times \dfrac{{\pi {r^4}}}{4}\]
On further simplification, then
\[\dfrac{{{\delta _1}}}{{{\delta _2}}} = \dfrac{{3\pi {r^4}}}{{{b^4}}}\,..................\left( 4 \right)\]
Both the beam having same cross section, then $\left( {{b^2} = \pi {r^2}} \right)$, substituting the term in the above equation, then
\[\dfrac{{{\delta _1}}}{{{\delta _2}}} = \dfrac{{3\pi {r^4}}}{{{\pi ^2}{r^4}}}\]
By cancelling the same terms, then
\[\dfrac{{{\delta _1}}}{{{\delta _2}}} = \dfrac{3}{\pi }\]
Then the above equation is written as,
\[{\delta _1}:{\delta _2} = 3:\pi \]
Hence, the option (A) is the correct answer.
Note: Moment of inertia for the square cross section does not have a direct formula, it has been derived from the moment of inertia for the square cross section formula. In equation (4), both the beams have the same cross section area, so the assumption is taken for the simple calculation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE