For two gases, A and B with molar masses ${{M}_{A}}$ and ${{M}_{B}}$, it is observed that at a certain temperature T, the mean velocity of A is equal to the root mean square velocity of B. Thus, the mean velocity of A can be made equal to the mean velocity of B, if:
A. A is at temperature T and B at T’, T’>T.
B. A is lowered to a temperature ${{T}_{2}}$ C. Both A and B are raised to a higher temperature.
D. Both A and B are placed at lower temperature.
D. Both A and B are placed at lower temperature.
Answer
Verified
455.1k+ views
Hint Try to think about the Kinetic theory of gases. According to the data given in the question we need to have an equation that can be used to relate the root mean square speed and the average speed of gas molecules.
Complete answer:
All the gas laws that we have discussed the Boyle's law, Charles Law Avogadro's Law are merely based on experimental evidence. There was no theoretical background to justify them So, the scientists were curious to know why the gases behave in a peculiar manner under certain not of condition. From Charles Law we got to know that the gases expand on heating But there was no theory to give the reason for such a tad So, there was a need for some theory which could tell about the happenings at the molecular level and so could answer the questions arising regarding the behaviour of gases. Later a theory was given called kinetic molecular theory of gases to provide a sound theoretical basis for the various gas laws.
The root-mean-square speed is the measure of the speed of particles in a gas, defined as the square root of the average velocity-squared of the molecules in a gas. The root-mean-square speed takes into account both molecular weight and temperature, two factors that directly affect the kinetic energy of a material. Whereas the average speed at a given temperature is the arithmetic mean of the speeds of different molecules of the gas.
Now,${{v}_{avg}}=\sqrt{\dfrac{8RT}{\pi M}}$ and ${{v}_{rms}}=\sqrt{\dfrac{3RT}{M}}$, at the temperature T, both velocities are equal. So,
$\sqrt{\dfrac{8RT}{\pi {{M}_{A}}}}=\sqrt{\dfrac{3RT}{{{M}_{B}}}}$,${{M}_{A}}\,and\,{{M}_{B}}$ are the molar masses.
So,$\dfrac{{{M}_{B}}}{{{M}_{A}}}=3\times \dfrac{\pi }{8};{{M}_{B}}>{{M}_{A}}$. That means, when they have same mean velocities, we have:
\[\begin{align}
& \sqrt{\dfrac{8RT'}{\pi {{M}_{B}}}}=\sqrt{\dfrac{8RT}{\pi {{M}_{A}}}} \\
& Taking\,square,we\,have: \\
& \dfrac{8RT}{\pi {{M}_{B}}}=\dfrac{8RT}{\pi {{M}_{A}}} \\
& \dfrac{T'}{T}=\dfrac{{{M}_{B}}}{{{M}_{A}}}\,\,\,So,\,T'>T \\
\end{align}\]
So, option A is correct. We can also write that:
$\begin{align}
& \dfrac{8RT}{\pi {{M}_{B}}}=\dfrac{8R{{T}_{2}}}{\pi {{M}_{A}}} \\
& So,\, \\
& \dfrac{T}{{{T}_{2}}}=\dfrac{{{M}_{B}}}{{{M}_{A}}};\,T>{{T}_{2}} \\
\end{align}$
So, option B is also correct. So, mean velocity of A increases when heat energy is supplied to it.
So, options A and B are the correct options.
NOTE: The order of the 3 types of velocities can be remembered by recalling the word “RAM” where ‘R’ is r.m.s, ‘A’ means average and ‘M’ means most probable. ${{V}_{rms}}>{{V}_{average}}>{{V}_{most\,probable}}$.
Complete answer:
All the gas laws that we have discussed the Boyle's law, Charles Law Avogadro's Law are merely based on experimental evidence. There was no theoretical background to justify them So, the scientists were curious to know why the gases behave in a peculiar manner under certain not of condition. From Charles Law we got to know that the gases expand on heating But there was no theory to give the reason for such a tad So, there was a need for some theory which could tell about the happenings at the molecular level and so could answer the questions arising regarding the behaviour of gases. Later a theory was given called kinetic molecular theory of gases to provide a sound theoretical basis for the various gas laws.
The root-mean-square speed is the measure of the speed of particles in a gas, defined as the square root of the average velocity-squared of the molecules in a gas. The root-mean-square speed takes into account both molecular weight and temperature, two factors that directly affect the kinetic energy of a material. Whereas the average speed at a given temperature is the arithmetic mean of the speeds of different molecules of the gas.
Now,${{v}_{avg}}=\sqrt{\dfrac{8RT}{\pi M}}$ and ${{v}_{rms}}=\sqrt{\dfrac{3RT}{M}}$, at the temperature T, both velocities are equal. So,
$\sqrt{\dfrac{8RT}{\pi {{M}_{A}}}}=\sqrt{\dfrac{3RT}{{{M}_{B}}}}$,${{M}_{A}}\,and\,{{M}_{B}}$ are the molar masses.
So,$\dfrac{{{M}_{B}}}{{{M}_{A}}}=3\times \dfrac{\pi }{8};{{M}_{B}}>{{M}_{A}}$. That means, when they have same mean velocities, we have:
\[\begin{align}
& \sqrt{\dfrac{8RT'}{\pi {{M}_{B}}}}=\sqrt{\dfrac{8RT}{\pi {{M}_{A}}}} \\
& Taking\,square,we\,have: \\
& \dfrac{8RT}{\pi {{M}_{B}}}=\dfrac{8RT}{\pi {{M}_{A}}} \\
& \dfrac{T'}{T}=\dfrac{{{M}_{B}}}{{{M}_{A}}}\,\,\,So,\,T'>T \\
\end{align}\]
So, option A is correct. We can also write that:
$\begin{align}
& \dfrac{8RT}{\pi {{M}_{B}}}=\dfrac{8R{{T}_{2}}}{\pi {{M}_{A}}} \\
& So,\, \\
& \dfrac{T}{{{T}_{2}}}=\dfrac{{{M}_{B}}}{{{M}_{A}}};\,T>{{T}_{2}} \\
\end{align}$
So, option B is also correct. So, mean velocity of A increases when heat energy is supplied to it.
So, options A and B are the correct options.
NOTE: The order of the 3 types of velocities can be remembered by recalling the word “RAM” where ‘R’ is r.m.s, ‘A’ means average and ‘M’ means most probable. ${{V}_{rms}}>{{V}_{average}}>{{V}_{most\,probable}}$.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE