
For what value of n are \[{2^n} - \;1\] and \[{2^n} + \;1\] prime?
A) 7
B) 5
C) 2
D) 1
Answer
593.1k+ views
Hint: A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. Since values of n given are smaller hit and trial is the best suited method for the question. A prime number is divisible by only 1 and the number itself.
Eg- 2,3,5,7,11,13,17,19,etc.
Complete step-by-step answer:
We are given various values for n and we need to find out for what value \[{2^n} - \;1\] and \[{2^n} + \;1\] are both Prime numbers.
Since, a prime number is not divisible by any number except 1 and the number itself.
For example: 13 is a prime number because -
13 when divided by 1 = $\dfrac{{13}}{1} = 13$ and when divided by 13 we get $\dfrac{{13}}{{13}} = 1$ gives a whole number. There are no numbers similar to 1 and 13 which can divide 13 and result in a natural number.
Now, to prove whether a number is a prime number, first try dividing it by 2, and see if you get a whole number. If you do, it can't be a prime number. If you don't get a whole number, next try dividing it by prime numbers: 3, 5, 7, and 11 (9 is divisible by 3) and so on, always dividing by a prime number.
Now, to solve the question, hit and trial is the best method to approach.
For 7 option (a)
$\begin{gathered}
{2^7} - 1 = 127(prime) \\
{2^7} + 1 = 129(non - prime) \\
\end{gathered} $
Since, 129 (divisible by 3) is non-prime 7 is incorrect.
For 5 option (b)
$\begin{gathered}
{2^5} - 1 = 31(prime) \\
{2^5} + 1 = 33(non - prime) \\
\end{gathered} $
Since 33 (divisible by 11 and 3) is non-prime, 5 is incorrect.
For 1 option (d)
$\begin{gathered}
{2^1} - 1 = 1(non - prime) \\
{2^1} + 1 = 3(prime) \\
\end{gathered} $
Since, 1 is non-prime 5 is incorrect.
For 2 option (c)
$\begin{gathered}
{2^2} - 1 = 3(prime) \\
{2^2} + 1 = 5(prime) \\
\end{gathered} $
Since, both the numbers are prime, option (c) is correct.
Note: If for some positive integer n, \[{2^n} - \;1\] is prime, then so is n. In the above question numerical values of n are smaller can be solved by hit and trial. There can be cases when these values become tedious. In such situations using this theorem question can be simplified.
Eg- 2,3,5,7,11,13,17,19,etc.
Complete step-by-step answer:
We are given various values for n and we need to find out for what value \[{2^n} - \;1\] and \[{2^n} + \;1\] are both Prime numbers.
Since, a prime number is not divisible by any number except 1 and the number itself.
For example: 13 is a prime number because -
13 when divided by 1 = $\dfrac{{13}}{1} = 13$ and when divided by 13 we get $\dfrac{{13}}{{13}} = 1$ gives a whole number. There are no numbers similar to 1 and 13 which can divide 13 and result in a natural number.
Now, to prove whether a number is a prime number, first try dividing it by 2, and see if you get a whole number. If you do, it can't be a prime number. If you don't get a whole number, next try dividing it by prime numbers: 3, 5, 7, and 11 (9 is divisible by 3) and so on, always dividing by a prime number.
Now, to solve the question, hit and trial is the best method to approach.
For 7 option (a)
$\begin{gathered}
{2^7} - 1 = 127(prime) \\
{2^7} + 1 = 129(non - prime) \\
\end{gathered} $
Since, 129 (divisible by 3) is non-prime 7 is incorrect.
For 5 option (b)
$\begin{gathered}
{2^5} - 1 = 31(prime) \\
{2^5} + 1 = 33(non - prime) \\
\end{gathered} $
Since 33 (divisible by 11 and 3) is non-prime, 5 is incorrect.
For 1 option (d)
$\begin{gathered}
{2^1} - 1 = 1(non - prime) \\
{2^1} + 1 = 3(prime) \\
\end{gathered} $
Since, 1 is non-prime 5 is incorrect.
For 2 option (c)
$\begin{gathered}
{2^2} - 1 = 3(prime) \\
{2^2} + 1 = 5(prime) \\
\end{gathered} $
Since, both the numbers are prime, option (c) is correct.
Note: If for some positive integer n, \[{2^n} - \;1\] is prime, then so is n. In the above question numerical values of n are smaller can be solved by hit and trial. There can be cases when these values become tedious. In such situations using this theorem question can be simplified.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

