For what value of n are \[{2^n} - \;1\] and \[{2^n} + \;1\] prime?
A) 7
B) 5
C) 2
D) 1
Answer
Verified
482.7k+ views
Hint: A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. Since values of n given are smaller hit and trial is the best suited method for the question. A prime number is divisible by only 1 and the number itself.
Eg- 2,3,5,7,11,13,17,19,etc.
Complete step-by-step answer:
We are given various values for n and we need to find out for what value \[{2^n} - \;1\] and \[{2^n} + \;1\] are both Prime numbers.
Since, a prime number is not divisible by any number except 1 and the number itself.
For example: 13 is a prime number because -
13 when divided by 1 = $\dfrac{{13}}{1} = 13$ and when divided by 13 we get $\dfrac{{13}}{{13}} = 1$ gives a whole number. There are no numbers similar to 1 and 13 which can divide 13 and result in a natural number.
Now, to prove whether a number is a prime number, first try dividing it by 2, and see if you get a whole number. If you do, it can't be a prime number. If you don't get a whole number, next try dividing it by prime numbers: 3, 5, 7, and 11 (9 is divisible by 3) and so on, always dividing by a prime number.
Now, to solve the question, hit and trial is the best method to approach.
For 7 option (a)
$\begin{gathered}
{2^7} - 1 = 127(prime) \\
{2^7} + 1 = 129(non - prime) \\
\end{gathered} $
Since, 129 (divisible by 3) is non-prime 7 is incorrect.
For 5 option (b)
$\begin{gathered}
{2^5} - 1 = 31(prime) \\
{2^5} + 1 = 33(non - prime) \\
\end{gathered} $
Since 33 (divisible by 11 and 3) is non-prime, 5 is incorrect.
For 1 option (d)
$\begin{gathered}
{2^1} - 1 = 1(non - prime) \\
{2^1} + 1 = 3(prime) \\
\end{gathered} $
Since, 1 is non-prime 5 is incorrect.
For 2 option (c)
$\begin{gathered}
{2^2} - 1 = 3(prime) \\
{2^2} + 1 = 5(prime) \\
\end{gathered} $
Since, both the numbers are prime, option (c) is correct.
Note: If for some positive integer n, \[{2^n} - \;1\] is prime, then so is n. In the above question numerical values of n are smaller can be solved by hit and trial. There can be cases when these values become tedious. In such situations using this theorem question can be simplified.
Eg- 2,3,5,7,11,13,17,19,etc.
Complete step-by-step answer:
We are given various values for n and we need to find out for what value \[{2^n} - \;1\] and \[{2^n} + \;1\] are both Prime numbers.
Since, a prime number is not divisible by any number except 1 and the number itself.
For example: 13 is a prime number because -
13 when divided by 1 = $\dfrac{{13}}{1} = 13$ and when divided by 13 we get $\dfrac{{13}}{{13}} = 1$ gives a whole number. There are no numbers similar to 1 and 13 which can divide 13 and result in a natural number.
Now, to prove whether a number is a prime number, first try dividing it by 2, and see if you get a whole number. If you do, it can't be a prime number. If you don't get a whole number, next try dividing it by prime numbers: 3, 5, 7, and 11 (9 is divisible by 3) and so on, always dividing by a prime number.
Now, to solve the question, hit and trial is the best method to approach.
For 7 option (a)
$\begin{gathered}
{2^7} - 1 = 127(prime) \\
{2^7} + 1 = 129(non - prime) \\
\end{gathered} $
Since, 129 (divisible by 3) is non-prime 7 is incorrect.
For 5 option (b)
$\begin{gathered}
{2^5} - 1 = 31(prime) \\
{2^5} + 1 = 33(non - prime) \\
\end{gathered} $
Since 33 (divisible by 11 and 3) is non-prime, 5 is incorrect.
For 1 option (d)
$\begin{gathered}
{2^1} - 1 = 1(non - prime) \\
{2^1} + 1 = 3(prime) \\
\end{gathered} $
Since, 1 is non-prime 5 is incorrect.
For 2 option (c)
$\begin{gathered}
{2^2} - 1 = 3(prime) \\
{2^2} + 1 = 5(prime) \\
\end{gathered} $
Since, both the numbers are prime, option (c) is correct.
Note: If for some positive integer n, \[{2^n} - \;1\] is prime, then so is n. In the above question numerical values of n are smaller can be solved by hit and trial. There can be cases when these values become tedious. In such situations using this theorem question can be simplified.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Write the following in Roman numerals 25819 class 7 maths CBSE
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How many ounces are in 500 mL class 8 maths CBSE
Which king started the organization of the Kumbh fair class 8 social science CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
Advantages and disadvantages of science