Answer
Verified
495.9k+ views
Hint: First convert out given expression using the formula, ${{\log }_{a}}x=\dfrac{\log a}{\log x} ,\log (cd)=\log c+\log d,\log \left( {{d}^{n}} \right)=n\log d$. Then divide the whole expression by common term. Then transform the obtained expression using ${{\log }_{a}}x=t$, then find the value of ‘t’ and then transform it to get values of x in terms of a.
Complete step-by-step answer:
We are given that for x, a > 0 we have to find the roots of equation
${{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}{{a}^{3}}=0.............\left( i \right)$
Now to proceed the equation we have to use formula such as,
${{\log }_{c}}d=\dfrac{\log d}{\log c}$
By using this we can transform equation (i) as,
$\dfrac{\log a}{\log ax}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}x}=0............\left( ii \right)$
Now we will use the formula such as,
log(cd) = log c +log d
By using this we can write equation (ii) as,
$\dfrac{\log a}{\log a+\log x}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}+\log x}=0............\left( iii \right)$
Now we will use the formula such as,
$\log \left( {{d}^{n}} \right)=n\log d$
By using this we can write the equation (iii) as,
$\dfrac{\log a}{\log a+\log x}+\dfrac{2\log a}{\log x}+\dfrac{3\log a}{2\log a+\log x}=0............\left( iv \right)$
Now we will divide log a from both numerator and denominator of the term of equation (iv) we get,
$\dfrac{1}{1+\dfrac{\log x}{\log a}}+\dfrac{2}{\dfrac{\log x}{\log a}}+\dfrac{3}{2+\dfrac{\log x}{\log a}}=0...............\left( v \right)$
In equation (v) we will use the formula, $\dfrac{\log c}{\log d}={{\log }_{d}}c$ we get,
$\dfrac{1}{1+{{\log }_{a}}x}+\dfrac{2}{{{\log }_{a}}x}+\dfrac{3}{2+{{\log }_{a}}x}=0..............\left( vi \right)$
Now we will substitute ${{\log }_{a}}x=t$ , we will transform equation (vi) as
\[\dfrac{1}{1+t}+\dfrac{2}{t}+\dfrac{3}{2+t}=0............\left( vii \right)\]
Taking LCM in (vii) we get,
$\dfrac{t\left( 2+t \right)+2\left( 1+t \right)(2+t)+3t\left( t+1 \right)}{\left( 1+t \right)t\left( 2+t \right)}=0$
On cross multiplication we get,
t(2 + t) + 2(1 + t)(2+t) +3t (t + 1) = 0
On further simplification we get,
$\begin{align}
& 2t+{{t}^{2}}+2(2+t+2t+{{t}^{2}})+3{{t}^{2}}+3t=0 \\
& \Rightarrow 2t+{{t}^{2}}+4+2t+4t+2{{t}^{2}}+3{{t}^{2}}+3t=0 \\
\end{align}$
On simplification we get,
$6{{t}^{2}}+11t+4=0$
This is a quadratic equation. We will solve it by splitting the middle term, we get
$\begin{align}
& 6{{t}^{2}}+8t+3t+4=0 \\
& \Rightarrow 2t\left( 3t+4 \right)+1\left( 3t+4 \right)=0 \\
& \Rightarrow (3t+4)(2t+1)=0 \\
& \Rightarrow 3t+4=0,2t+1=0 \\
& \Rightarrow t=-\dfrac{4}{3},t=-\dfrac{1}{2} \\
\end{align}$
So, finally the value for $t=\dfrac{-4}{3},\dfrac{-1}{2}$.
We had assumed,
${{\log }_{a}}x=t$
Substituting the value of ‘t’, we get
${{\log }_{a}}x=\dfrac{-4}{3}$ and ${{\log }_{a}}x=-\dfrac{1}{2}$
Now we will use the transformation that is, ${{\log }_{b}}a=c\Rightarrow a={{b}^{c}}$. By using this in above equation, we get
$x={{a}^{-\dfrac{4}{3}}}$ and $x={{a}^{\dfrac{-1}{2}}}$ respectively.
Therefore, the correct answer is option (a) and (c).
Note: Students should be careful while calculating and finding values of ${{\log }_{a}}x$ also using transformation of changing ${{\log }_{a}}x=t$as $x={{a}^{t}}$.
Another way to solve the quadratic equation is using the formula, $t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
Complete step-by-step answer:
We are given that for x, a > 0 we have to find the roots of equation
${{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}{{a}^{3}}=0.............\left( i \right)$
Now to proceed the equation we have to use formula such as,
${{\log }_{c}}d=\dfrac{\log d}{\log c}$
By using this we can transform equation (i) as,
$\dfrac{\log a}{\log ax}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}x}=0............\left( ii \right)$
Now we will use the formula such as,
log(cd) = log c +log d
By using this we can write equation (ii) as,
$\dfrac{\log a}{\log a+\log x}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}+\log x}=0............\left( iii \right)$
Now we will use the formula such as,
$\log \left( {{d}^{n}} \right)=n\log d$
By using this we can write the equation (iii) as,
$\dfrac{\log a}{\log a+\log x}+\dfrac{2\log a}{\log x}+\dfrac{3\log a}{2\log a+\log x}=0............\left( iv \right)$
Now we will divide log a from both numerator and denominator of the term of equation (iv) we get,
$\dfrac{1}{1+\dfrac{\log x}{\log a}}+\dfrac{2}{\dfrac{\log x}{\log a}}+\dfrac{3}{2+\dfrac{\log x}{\log a}}=0...............\left( v \right)$
In equation (v) we will use the formula, $\dfrac{\log c}{\log d}={{\log }_{d}}c$ we get,
$\dfrac{1}{1+{{\log }_{a}}x}+\dfrac{2}{{{\log }_{a}}x}+\dfrac{3}{2+{{\log }_{a}}x}=0..............\left( vi \right)$
Now we will substitute ${{\log }_{a}}x=t$ , we will transform equation (vi) as
\[\dfrac{1}{1+t}+\dfrac{2}{t}+\dfrac{3}{2+t}=0............\left( vii \right)\]
Taking LCM in (vii) we get,
$\dfrac{t\left( 2+t \right)+2\left( 1+t \right)(2+t)+3t\left( t+1 \right)}{\left( 1+t \right)t\left( 2+t \right)}=0$
On cross multiplication we get,
t(2 + t) + 2(1 + t)(2+t) +3t (t + 1) = 0
On further simplification we get,
$\begin{align}
& 2t+{{t}^{2}}+2(2+t+2t+{{t}^{2}})+3{{t}^{2}}+3t=0 \\
& \Rightarrow 2t+{{t}^{2}}+4+2t+4t+2{{t}^{2}}+3{{t}^{2}}+3t=0 \\
\end{align}$
On simplification we get,
$6{{t}^{2}}+11t+4=0$
This is a quadratic equation. We will solve it by splitting the middle term, we get
$\begin{align}
& 6{{t}^{2}}+8t+3t+4=0 \\
& \Rightarrow 2t\left( 3t+4 \right)+1\left( 3t+4 \right)=0 \\
& \Rightarrow (3t+4)(2t+1)=0 \\
& \Rightarrow 3t+4=0,2t+1=0 \\
& \Rightarrow t=-\dfrac{4}{3},t=-\dfrac{1}{2} \\
\end{align}$
So, finally the value for $t=\dfrac{-4}{3},\dfrac{-1}{2}$.
We had assumed,
${{\log }_{a}}x=t$
Substituting the value of ‘t’, we get
${{\log }_{a}}x=\dfrac{-4}{3}$ and ${{\log }_{a}}x=-\dfrac{1}{2}$
Now we will use the transformation that is, ${{\log }_{b}}a=c\Rightarrow a={{b}^{c}}$. By using this in above equation, we get
$x={{a}^{-\dfrac{4}{3}}}$ and $x={{a}^{\dfrac{-1}{2}}}$ respectively.
Therefore, the correct answer is option (a) and (c).
Note: Students should be careful while calculating and finding values of ${{\log }_{a}}x$ also using transformation of changing ${{\log }_{a}}x=t$as $x={{a}^{t}}$.
Another way to solve the quadratic equation is using the formula, $t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE