Freezing point of a 4 % aqueous solution of X is equal to freezing point of 12 % aqueous solution of Y. If molecular weight of X is A, then the molecular weight of Y is :
a.) A
b.) 3A
c.) 4A
d.) 2A
Answer
Verified
449.1k+ views
Hint : Freezing point of a substance is the temperature of liquid at which it changes its state from liquid to solid state at atmospheric pressure. The freezing point of a solution is given by -
$\Delta {T_f} = {K_f} \times m$
Where $\Delta {T_f}$ is the change in freezing point.
${K_f}$ is the molal depression constant
‘m’ is the molality of the solution.
Complete step by step answer :
Let us start by writing what is given to us and what we need to find.
Thus, Given :
Freezing point of X = Freezing point of Y
X = 4 % aqueous solution = 4 g of solute in 100 g of water
Y = 12 % aqueous solution = 12 g of solute in 100 g of water
Molecular weight of X is A
To find :
Molecular weight of X is B
We know, the freezing point of a solution is given by -
$\Delta {T_f} = {K_f} \times m$
Where $\Delta {T_f}$ is the change in freezing point.
${K_f}$is the molal depression constant
‘m’ is the molality of the solution.
We have, Freezing point of X = Freezing point of Y
So, $\Delta {T_f}(x)$=$\Delta {T_f}(y)$
${({K_f} \times {m_x})_x}$=${({K_f} \times {m_y})_y}$
Thus, ${m_x}$=${m_y}$
We know molality of the solution is given by -
‘m’ = $\dfrac{{weight{\text{ of solute}} \times 1000}}{{weight{\text{ of solvent}} \times {\text{Molecular weight of solvent}}}}$
So, for ${m_x}$=${m_y}$
${(\dfrac{{weight{\text{ of solute}} \times 1000}}{{weight{\text{ of solvent}} \times {\text{Molecular weight of solvent}}}})_x}$=${(\dfrac{{weight{\text{ of solute}} \times 1000}}{{weight{\text{ of solvent}} \times {\text{Molecular weight of solvent}}}})_y}$
$\dfrac{{4 \times 1000}}{{100 \times {M_1}}}$=$\dfrac{{12 \times 1000}}{{100 \times {M_2}}}$
$\dfrac{4}{{{M_1}}}$=$\dfrac{{12}}{{{M_2}}}$
Molecular weight of X is A
So, $\dfrac{4}{A}$=$\dfrac{{12}}{{{M_2}}}$
${M_2}$= 3A
Thus, the correct option is option b.).
Note: It must be noted that the depression in freezing point is a colligative property and it depends on the number of solute particles. Addition of non-volatile solute leads to decrease in freezing point of a solid.
$\Delta {T_f} = {K_f} \times m$
Where $\Delta {T_f}$ is the change in freezing point.
${K_f}$ is the molal depression constant
‘m’ is the molality of the solution.
Complete step by step answer :
Let us start by writing what is given to us and what we need to find.
Thus, Given :
Freezing point of X = Freezing point of Y
X = 4 % aqueous solution = 4 g of solute in 100 g of water
Y = 12 % aqueous solution = 12 g of solute in 100 g of water
Molecular weight of X is A
To find :
Molecular weight of X is B
We know, the freezing point of a solution is given by -
$\Delta {T_f} = {K_f} \times m$
Where $\Delta {T_f}$ is the change in freezing point.
${K_f}$is the molal depression constant
‘m’ is the molality of the solution.
We have, Freezing point of X = Freezing point of Y
So, $\Delta {T_f}(x)$=$\Delta {T_f}(y)$
${({K_f} \times {m_x})_x}$=${({K_f} \times {m_y})_y}$
Thus, ${m_x}$=${m_y}$
We know molality of the solution is given by -
‘m’ = $\dfrac{{weight{\text{ of solute}} \times 1000}}{{weight{\text{ of solvent}} \times {\text{Molecular weight of solvent}}}}$
So, for ${m_x}$=${m_y}$
${(\dfrac{{weight{\text{ of solute}} \times 1000}}{{weight{\text{ of solvent}} \times {\text{Molecular weight of solvent}}}})_x}$=${(\dfrac{{weight{\text{ of solute}} \times 1000}}{{weight{\text{ of solvent}} \times {\text{Molecular weight of solvent}}}})_y}$
$\dfrac{{4 \times 1000}}{{100 \times {M_1}}}$=$\dfrac{{12 \times 1000}}{{100 \times {M_2}}}$
$\dfrac{4}{{{M_1}}}$=$\dfrac{{12}}{{{M_2}}}$
Molecular weight of X is A
So, $\dfrac{4}{A}$=$\dfrac{{12}}{{{M_2}}}$
${M_2}$= 3A
Thus, the correct option is option b.).
Note: It must be noted that the depression in freezing point is a colligative property and it depends on the number of solute particles. Addition of non-volatile solute leads to decrease in freezing point of a solid.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Why is the cell called the structural and functional class 12 biology CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE