
Freezing point of a 4 % aqueous solution of X is equal to freezing point of 12 % aqueous solution of Y. If molecular weight of X is A, then the molecular weight of Y is :
a.) A
b.) 3A
c.) 4A
d.) 2A
Answer
552.9k+ views
Hint : Freezing point of a substance is the temperature of liquid at which it changes its state from liquid to solid state at atmospheric pressure. The freezing point of a solution is given by -
$\Delta {T_f} = {K_f} \times m$
Where $\Delta {T_f}$ is the change in freezing point.
${K_f}$ is the molal depression constant
‘m’ is the molality of the solution.
Complete step by step answer :
Let us start by writing what is given to us and what we need to find.
Thus, Given :
Freezing point of X = Freezing point of Y
X = 4 % aqueous solution = 4 g of solute in 100 g of water
Y = 12 % aqueous solution = 12 g of solute in 100 g of water
Molecular weight of X is A
To find :
Molecular weight of X is B
We know, the freezing point of a solution is given by -
$\Delta {T_f} = {K_f} \times m$
Where $\Delta {T_f}$ is the change in freezing point.
${K_f}$is the molal depression constant
‘m’ is the molality of the solution.
We have, Freezing point of X = Freezing point of Y
So, $\Delta {T_f}(x)$=$\Delta {T_f}(y)$
${({K_f} \times {m_x})_x}$=${({K_f} \times {m_y})_y}$
Thus, ${m_x}$=${m_y}$
We know molality of the solution is given by -
‘m’ = $\dfrac{{weight{\text{ of solute}} \times 1000}}{{weight{\text{ of solvent}} \times {\text{Molecular weight of solvent}}}}$
So, for ${m_x}$=${m_y}$
${(\dfrac{{weight{\text{ of solute}} \times 1000}}{{weight{\text{ of solvent}} \times {\text{Molecular weight of solvent}}}})_x}$=${(\dfrac{{weight{\text{ of solute}} \times 1000}}{{weight{\text{ of solvent}} \times {\text{Molecular weight of solvent}}}})_y}$
$\dfrac{{4 \times 1000}}{{100 \times {M_1}}}$=$\dfrac{{12 \times 1000}}{{100 \times {M_2}}}$
$\dfrac{4}{{{M_1}}}$=$\dfrac{{12}}{{{M_2}}}$
Molecular weight of X is A
So, $\dfrac{4}{A}$=$\dfrac{{12}}{{{M_2}}}$
${M_2}$= 3A
Thus, the correct option is option b.).
Note: It must be noted that the depression in freezing point is a colligative property and it depends on the number of solute particles. Addition of non-volatile solute leads to decrease in freezing point of a solid.
$\Delta {T_f} = {K_f} \times m$
Where $\Delta {T_f}$ is the change in freezing point.
${K_f}$ is the molal depression constant
‘m’ is the molality of the solution.
Complete step by step answer :
Let us start by writing what is given to us and what we need to find.
Thus, Given :
Freezing point of X = Freezing point of Y
X = 4 % aqueous solution = 4 g of solute in 100 g of water
Y = 12 % aqueous solution = 12 g of solute in 100 g of water
Molecular weight of X is A
To find :
Molecular weight of X is B
We know, the freezing point of a solution is given by -
$\Delta {T_f} = {K_f} \times m$
Where $\Delta {T_f}$ is the change in freezing point.
${K_f}$is the molal depression constant
‘m’ is the molality of the solution.
We have, Freezing point of X = Freezing point of Y
So, $\Delta {T_f}(x)$=$\Delta {T_f}(y)$
${({K_f} \times {m_x})_x}$=${({K_f} \times {m_y})_y}$
Thus, ${m_x}$=${m_y}$
We know molality of the solution is given by -
‘m’ = $\dfrac{{weight{\text{ of solute}} \times 1000}}{{weight{\text{ of solvent}} \times {\text{Molecular weight of solvent}}}}$
So, for ${m_x}$=${m_y}$
${(\dfrac{{weight{\text{ of solute}} \times 1000}}{{weight{\text{ of solvent}} \times {\text{Molecular weight of solvent}}}})_x}$=${(\dfrac{{weight{\text{ of solute}} \times 1000}}{{weight{\text{ of solvent}} \times {\text{Molecular weight of solvent}}}})_y}$
$\dfrac{{4 \times 1000}}{{100 \times {M_1}}}$=$\dfrac{{12 \times 1000}}{{100 \times {M_2}}}$
$\dfrac{4}{{{M_1}}}$=$\dfrac{{12}}{{{M_2}}}$
Molecular weight of X is A
So, $\dfrac{4}{A}$=$\dfrac{{12}}{{{M_2}}}$
${M_2}$= 3A
Thus, the correct option is option b.).
Note: It must be noted that the depression in freezing point is a colligative property and it depends on the number of solute particles. Addition of non-volatile solute leads to decrease in freezing point of a solid.
Recently Updated Pages
A small flat search coil of area 5 cm2 with 140 closely class 12 physics CBSE

Draw a curve for showing variation in alternating current class 12 physics CBSE

The stopping potential as a function of frequency of class 12 physics CBSE

Describe the experiment to compare the emf of two cells class 12 physics CBSE

What is the difference between a sol and a gel class 12 chemistry CBSE

The embryo at 16 celled stage is known as a Morula class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

