
From $5$ consonants and $4$ vowels, how many words can be formed by using $3$ consonants and $2$ vowels.
A. 9440
B. 6800
C. 3600
D. 7200
Answer
600k+ views
Hint: The number of ways a word can form from $5$ consonants by using $3$ consonants $ = $ ${}^5{C_3}$ and from $4$ vowels by using $2$ vowels $ = $${}^4{C_2}$, hence the number of words can be $ = {}^5{C_3} \times {}^4{C_2} \times {}^5{P_5}$. Use this to find the no. of words.
Complete step-by-step solution:
According to the question it is given that :
From$5$consonants , $3$ consonants can be selected and from $4$ vowels , $2$ vowels can be selected .
So, from $5$ consonants , $3$ consonants can be selected in ${}^5{C_3}$ ways.
From $4$ vowels ,$2$ vowels can be selected in ${}^4{C_2}$ways.
Now with every selection , the number of ways of arranging $5$ letters in ${}^5{P_5}$ways.
Hence, total number of words $ = {}^5{C_3} \times {}^4{C_2} \times {}^5{P_5}$
$\therefore $we know that
$
{}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} \\
{}^n{P_r} = \dfrac{{n!}}{{(n - r)!}} \\
$
Hence , total number of words $ = {}^5{C_3} \times {}^4{C_2} \times {}^5{P_5}$
$
= \dfrac{{5!}}{{3!(5 - 3)!}} \times \dfrac{{4!}}{{2!(4 - 2)!}} \times \dfrac{{5!}}{{(5 - 5)!}} \\
= \dfrac{{5 \times 4 \times 3!}}{{3! \times 2!}} \times \dfrac{{4 \times 3 \times 2!}}{{2! \times 2!}} \times 5! \\
= 5 \times 2 \times 2 \times 3 \times 120 \\
= 7200 \\
$
Note: It is advisable in such types of questions we should see that what are all possibilities that words can be formed , for this one must have a basic understanding of permutation and combination. Here we have used $ {}5{P_5}$ for arranging 5 words.
Complete step-by-step solution:
According to the question it is given that :
From$5$consonants , $3$ consonants can be selected and from $4$ vowels , $2$ vowels can be selected .
So, from $5$ consonants , $3$ consonants can be selected in ${}^5{C_3}$ ways.
From $4$ vowels ,$2$ vowels can be selected in ${}^4{C_2}$ways.
Now with every selection , the number of ways of arranging $5$ letters in ${}^5{P_5}$ways.
Hence, total number of words $ = {}^5{C_3} \times {}^4{C_2} \times {}^5{P_5}$
$\therefore $we know that
$
{}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} \\
{}^n{P_r} = \dfrac{{n!}}{{(n - r)!}} \\
$
Hence , total number of words $ = {}^5{C_3} \times {}^4{C_2} \times {}^5{P_5}$
$
= \dfrac{{5!}}{{3!(5 - 3)!}} \times \dfrac{{4!}}{{2!(4 - 2)!}} \times \dfrac{{5!}}{{(5 - 5)!}} \\
= \dfrac{{5 \times 4 \times 3!}}{{3! \times 2!}} \times \dfrac{{4 \times 3 \times 2!}}{{2! \times 2!}} \times 5! \\
= 5 \times 2 \times 2 \times 3 \times 120 \\
= 7200 \\
$
Note: It is advisable in such types of questions we should see that what are all possibilities that words can be formed , for this one must have a basic understanding of permutation and combination. Here we have used $ {}5{P_5}$ for arranging 5 words.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

