Answer
Verified
468.9k+ views
Hint: The above question is the example of the simultaneous linear equations. They can be easily solved using certain steps. It can be seen that we have three variables $x,y$ and $z$ . So we have to eliminate one variable from both of them. Now we will be left with two linear equations with two variables. So these equations can be easily solved further and values of $x,y$ and $z$ can be easily calculated.
Complete step-by-step answer:
We are given three equations
$x - 3y - 2z = 0 - - - - - \left( 1 \right)$, $5x + 7y - z = 0 - - - - - - - \left( 2 \right)$ and$ - 7x - 2y + 4z = 0 - - - - - \left( 3 \right)$
It can be easily observed that each variable has power $1$, so these equations are simultaneous equations. It is obvious that we cannot solve and get the value of each variable by simply adding or subtracting these equations.
The approach we will take is to take $2$ pairs from the above three equations and eliminate one variable in each.
By using the equations $1$ and $2$, we will try to eliminate variable $z$. So, we will subtract $2 \times \left( 2 \right)$ from$\left( 1 \right)$.
$x - 3y - 2z - 2\left( {5x + 7y - z} \right) = 0$
$x - 3y - 2z - 10x - 14y + 2z = 0$
$ - 9x - 17y = 0$
$9x + 17y = 0$\[ - - - - - - - \left( 4 \right)\]
By using equations $2$ and $3$, here also we will try to eliminate the variable \[z\]. So we will add $4 \times \left( 2 \right)$ and $\left( 3 \right)$
$4\left( {5x + 7y - z} \right) + \left( { - 7x - 2y = 4z} \right) = 0$
$20x + 21y - 4z - 7x - 2y + 4z = 0$
$13x + 19y = 0$$ - - - - - - \left( 5 \right)$
Now we have simultaneous equations in two variables, $\left( 4 \right)$ and$\left( 5 \right)$.
These equations can be solved easily by eliminating one variable
\[9\left( {13x + 19y} \right) - 13\left( {9x + 17y} \right) = 0\]
$117x + 171y - 117x - 221y = 0$
$50y = 0$
So $13x + 19y = 0$
$13x + 19\left( 0 \right) = 0$
$13x = 0$
$x = 0$
And using equation$1$,
$x - 3y - 2z = 0$
$0 - 0 - 2z = 0$
$z = 0$
The value of the variable $x,y,z$ are all $0$.
Note: At the elimination step, the student must add or subtract the equations such that the variable gets eliminated. We can multiply the whole equation with constants or integers to help in elimination. This makes the problem simpler.
Complete step-by-step answer:
We are given three equations
$x - 3y - 2z = 0 - - - - - \left( 1 \right)$, $5x + 7y - z = 0 - - - - - - - \left( 2 \right)$ and$ - 7x - 2y + 4z = 0 - - - - - \left( 3 \right)$
It can be easily observed that each variable has power $1$, so these equations are simultaneous equations. It is obvious that we cannot solve and get the value of each variable by simply adding or subtracting these equations.
The approach we will take is to take $2$ pairs from the above three equations and eliminate one variable in each.
By using the equations $1$ and $2$, we will try to eliminate variable $z$. So, we will subtract $2 \times \left( 2 \right)$ from$\left( 1 \right)$.
$x - 3y - 2z - 2\left( {5x + 7y - z} \right) = 0$
$x - 3y - 2z - 10x - 14y + 2z = 0$
$ - 9x - 17y = 0$
$9x + 17y = 0$\[ - - - - - - - \left( 4 \right)\]
By using equations $2$ and $3$, here also we will try to eliminate the variable \[z\]. So we will add $4 \times \left( 2 \right)$ and $\left( 3 \right)$
$4\left( {5x + 7y - z} \right) + \left( { - 7x - 2y = 4z} \right) = 0$
$20x + 21y - 4z - 7x - 2y + 4z = 0$
$13x + 19y = 0$$ - - - - - - \left( 5 \right)$
Now we have simultaneous equations in two variables, $\left( 4 \right)$ and$\left( 5 \right)$.
These equations can be solved easily by eliminating one variable
\[9\left( {13x + 19y} \right) - 13\left( {9x + 17y} \right) = 0\]
$117x + 171y - 117x - 221y = 0$
$50y = 0$
So $13x + 19y = 0$
$13x + 19\left( 0 \right) = 0$
$13x = 0$
$x = 0$
And using equation$1$,
$x - 3y - 2z = 0$
$0 - 0 - 2z = 0$
$z = 0$
The value of the variable $x,y,z$ are all $0$.
Note: At the elimination step, the student must add or subtract the equations such that the variable gets eliminated. We can multiply the whole equation with constants or integers to help in elimination. This makes the problem simpler.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers