Answer
Verified
429k+ views
Hint:The given differential equation can be solved by separable method, in which we separate variables and integrate them. Also to integrate one of the integrals use substitution method and then to get an explicit general solution, take both side anti logarithms (or exponential to the power e).
Complete step by step solution:
To find the general solution of the given differential equation: $\left(
{y\ln y} \right)dx - xdy = 0$, we will use a separation method, as we can see this is a type of separable differential equation.
As the differential equation $\left( {y\ln y} \right)dx - xdy = 0$ is a separable differential equation, separating the variables in it as follows
$
\Rightarrow \left( {y\ln y} \right)dx - xdy = 0 \\
\Rightarrow \left( {y\ln y} \right)dx = xdy \\
\Rightarrow \dfrac{{dx}}{x} = \dfrac{{dy}}{{\left( {y\ln y} \right)}} \\
$
We have separated the variables, now integrating both sides, we will get
\[ \Rightarrow \int {\dfrac{1}{x}dx} = \int {\dfrac{1}{{\left( {y\ln y} \right)}}} dy\]
As we can see the left hand integral is trivial but the right hand side integral is unsetting, so we will try a substitution method to simplify it.
Let us take $u = \ln y \Rightarrow du = \dfrac{1}{y}dy$
Substituting this in above integral, we will get
\[ \Rightarrow \int {\dfrac{1}{x}dx} = \int {\dfrac{1}{u}du} \]
Now we can integrate it easily,
\[ \Rightarrow \ln x + c = \ln u\]
Using property of log, we can also write it as
\[
\Rightarrow \ln x + \ln {\text{C}} = \ln u \\
\Rightarrow \ln {\text{C}}x = \ln u \\
\]
After restoring the substitution, we will get
\[ \Rightarrow \ln {\text{C}}x = \ln (\ln y)\]
Now taking exponential to base e, both sides, we will get
\[
\Rightarrow {e^{\ln {\text{C}}x}} = {e^{\ln (\ln y)}} \\
\Rightarrow {\text{C}}x = \ln y \\
\]
Again taking exponential to base e, we will get
\[
\Rightarrow {e^{{\text{C}}x}} = {e^{\ln y}} \\
\Rightarrow {e^{{\text{C}}x}} = y \\
\Rightarrow y = {e^{{\text{C}}x}} \\
\]
So \[y = {e^{{\text{C}}x}}\] is the general solution for the differential equation $\left( {y\ln y} \right)dx - xdy = 0$
Note: We have calculated the explicit general solution in this problem. Explicit solutions consist of dependent variables at the left hand side with power one and every other terms on the right hand side, whereas every solution which is not explicit is an implicit solution.
Complete step by step solution:
To find the general solution of the given differential equation: $\left(
{y\ln y} \right)dx - xdy = 0$, we will use a separation method, as we can see this is a type of separable differential equation.
As the differential equation $\left( {y\ln y} \right)dx - xdy = 0$ is a separable differential equation, separating the variables in it as follows
$
\Rightarrow \left( {y\ln y} \right)dx - xdy = 0 \\
\Rightarrow \left( {y\ln y} \right)dx = xdy \\
\Rightarrow \dfrac{{dx}}{x} = \dfrac{{dy}}{{\left( {y\ln y} \right)}} \\
$
We have separated the variables, now integrating both sides, we will get
\[ \Rightarrow \int {\dfrac{1}{x}dx} = \int {\dfrac{1}{{\left( {y\ln y} \right)}}} dy\]
As we can see the left hand integral is trivial but the right hand side integral is unsetting, so we will try a substitution method to simplify it.
Let us take $u = \ln y \Rightarrow du = \dfrac{1}{y}dy$
Substituting this in above integral, we will get
\[ \Rightarrow \int {\dfrac{1}{x}dx} = \int {\dfrac{1}{u}du} \]
Now we can integrate it easily,
\[ \Rightarrow \ln x + c = \ln u\]
Using property of log, we can also write it as
\[
\Rightarrow \ln x + \ln {\text{C}} = \ln u \\
\Rightarrow \ln {\text{C}}x = \ln u \\
\]
After restoring the substitution, we will get
\[ \Rightarrow \ln {\text{C}}x = \ln (\ln y)\]
Now taking exponential to base e, both sides, we will get
\[
\Rightarrow {e^{\ln {\text{C}}x}} = {e^{\ln (\ln y)}} \\
\Rightarrow {\text{C}}x = \ln y \\
\]
Again taking exponential to base e, we will get
\[
\Rightarrow {e^{{\text{C}}x}} = {e^{\ln y}} \\
\Rightarrow {e^{{\text{C}}x}} = y \\
\Rightarrow y = {e^{{\text{C}}x}} \\
\]
So \[y = {e^{{\text{C}}x}}\] is the general solution for the differential equation $\left( {y\ln y} \right)dx - xdy = 0$
Note: We have calculated the explicit general solution in this problem. Explicit solutions consist of dependent variables at the left hand side with power one and every other terms on the right hand side, whereas every solution which is not explicit is an implicit solution.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE