Give an example of two irrational number whose difference is an irrational number.
Answer
Verified
482.7k+ views
Hint: Irrational numbers are a real number that, when expressed as a decimal, 90 on after (forever) after the decimal and never repeat.
Irrational are the real numbers that cannot be represented as a simple fraction It cannot be expressed in the form of a ratio such as \[\dfrac{p}{q}\] where p & q are
Integers, \[q \ne o\] it is a contradiction of rational numbers
For example, \[\sqrt 5 ,\sqrt {11} ,\sqrt {21} \]etc are irrational numbers
Properties of irrational number
1) The addition of an irrational number and rational number gives an irrational number for example \[x = \] irrational\[y = \] rational
\[ \Rightarrow x + y = \] irrational number
2) Multiplication of any irrational number with non-zero rational number results is an irrational number example \[x = \] irrational \[y = \] rational
\[ \Rightarrow x + y = \]irrational
The LCM of two irrational number may or may NOT exists.
The addition or multiplication of two irrational numbers may be rational for example \[\sqrt 2 .\sqrt 2 = 2\] Here \[\sqrt 2 \] is irrational 2 is rational.
Complete step by step answer:
Let us take
\[(\sqrt 3 ,\sqrt 3 )\] are irrational numbers.
Difference b/w \[(\sqrt 3 ,\& - \sqrt 3 \]
\[ = \sqrt 3 , - \sqrt 3 \]
\[ = \sqrt 3 + \sqrt 3 \]
\[ = \sqrt[2]{3}\](irrational number)
Difference between \[\sqrt 5 , - \sqrt 5 \] (irrational number)
\[ \Rightarrow \sqrt 3 - ( - \sqrt 5 )\]
\[ = \sqrt 5 + \sqrt 5 \]
\[ = \sqrt[2]{5}\] (irrational number)
\[\sqrt[4]{3}, - \sqrt[2]{3}\]
difference between \[\sqrt[4]{3} - ( - \sqrt[2]{3}) = \sqrt[6]{3}\] irrational number
Above all options A, B, C are the example of irrational numbers whose difference is an irrational number.
Note:
The decimal expansion of an irrational number is neither terminating nor recurring
Pi\[(\pi )\] is an irrational number because it is non-terminating the approximate value of pi is
The set of an irrational number is NOT closed under the multiplication process unlike the set of rational numbers.
Integers are a rational number but Not irrational.
\[\pi = 3.14159265358\]
\[e = 2.718281845\] are irrational numbers.
An irrational number is represented by using the set difference of the real minus rational numbers in a way \[R - Q\]
Irrational are the real numbers that cannot be represented as a simple fraction It cannot be expressed in the form of a ratio such as \[\dfrac{p}{q}\] where p & q are
Integers, \[q \ne o\] it is a contradiction of rational numbers
For example, \[\sqrt 5 ,\sqrt {11} ,\sqrt {21} \]etc are irrational numbers
Properties of irrational number
1) The addition of an irrational number and rational number gives an irrational number for example \[x = \] irrational\[y = \] rational
\[ \Rightarrow x + y = \] irrational number
2) Multiplication of any irrational number with non-zero rational number results is an irrational number example \[x = \] irrational \[y = \] rational
\[ \Rightarrow x + y = \]irrational
The LCM of two irrational number may or may NOT exists.
The addition or multiplication of two irrational numbers may be rational for example \[\sqrt 2 .\sqrt 2 = 2\] Here \[\sqrt 2 \] is irrational 2 is rational.
Complete step by step answer:
Let us take
\[(\sqrt 3 ,\sqrt 3 )\] are irrational numbers.
Difference b/w \[(\sqrt 3 ,\& - \sqrt 3 \]
\[ = \sqrt 3 , - \sqrt 3 \]
\[ = \sqrt 3 + \sqrt 3 \]
\[ = \sqrt[2]{3}\](irrational number)
Difference between \[\sqrt 5 , - \sqrt 5 \] (irrational number)
\[ \Rightarrow \sqrt 3 - ( - \sqrt 5 )\]
\[ = \sqrt 5 + \sqrt 5 \]
\[ = \sqrt[2]{5}\] (irrational number)
\[\sqrt[4]{3}, - \sqrt[2]{3}\]
difference between \[\sqrt[4]{3} - ( - \sqrt[2]{3}) = \sqrt[6]{3}\] irrational number
Above all options A, B, C are the example of irrational numbers whose difference is an irrational number.
Note:
The decimal expansion of an irrational number is neither terminating nor recurring
Pi\[(\pi )\] is an irrational number because it is non-terminating the approximate value of pi is
The set of an irrational number is NOT closed under the multiplication process unlike the set of rational numbers.
Integers are a rational number but Not irrational.
\[\pi = 3.14159265358\]
\[e = 2.718281845\] are irrational numbers.
An irrational number is represented by using the set difference of the real minus rational numbers in a way \[R - Q\]
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE