Answer
Verified
469.2k+ views
Hint: Irrational numbers are a real number that, when expressed as a decimal, 90 on after (forever) after the decimal and never repeat.
Irrational are the real numbers that cannot be represented as a simple fraction It cannot be expressed in the form of a ratio such as \[\dfrac{p}{q}\] where p & q are
Integers, \[q \ne o\] it is a contradiction of rational numbers
For example, \[\sqrt 5 ,\sqrt {11} ,\sqrt {21} \]etc are irrational numbers
Properties of irrational number
1) The addition of an irrational number and rational number gives an irrational number for example \[x = \] irrational\[y = \] rational
\[ \Rightarrow x + y = \] irrational number
2) Multiplication of any irrational number with non-zero rational number results is an irrational number example \[x = \] irrational \[y = \] rational
\[ \Rightarrow x + y = \]irrational
The LCM of two irrational number may or may NOT exists.
The addition or multiplication of two irrational numbers may be rational for example \[\sqrt 2 .\sqrt 2 = 2\] Here \[\sqrt 2 \] is irrational 2 is rational.
Complete step by step answer:
Let us take
\[(\sqrt 3 ,\sqrt 3 )\] are irrational numbers.
Difference b/w \[(\sqrt 3 ,\& - \sqrt 3 \]
\[ = \sqrt 3 , - \sqrt 3 \]
\[ = \sqrt 3 + \sqrt 3 \]
\[ = \sqrt[2]{3}\](irrational number)
Difference between \[\sqrt 5 , - \sqrt 5 \] (irrational number)
\[ \Rightarrow \sqrt 3 - ( - \sqrt 5 )\]
\[ = \sqrt 5 + \sqrt 5 \]
\[ = \sqrt[2]{5}\] (irrational number)
\[\sqrt[4]{3}, - \sqrt[2]{3}\]
difference between \[\sqrt[4]{3} - ( - \sqrt[2]{3}) = \sqrt[6]{3}\] irrational number
Above all options A, B, C are the example of irrational numbers whose difference is an irrational number.
Note:
The decimal expansion of an irrational number is neither terminating nor recurring
Pi\[(\pi )\] is an irrational number because it is non-terminating the approximate value of pi is
The set of an irrational number is NOT closed under the multiplication process unlike the set of rational numbers.
Integers are a rational number but Not irrational.
\[\pi = 3.14159265358\]
\[e = 2.718281845\] are irrational numbers.
An irrational number is represented by using the set difference of the real minus rational numbers in a way \[R - Q\]
Irrational are the real numbers that cannot be represented as a simple fraction It cannot be expressed in the form of a ratio such as \[\dfrac{p}{q}\] where p & q are
Integers, \[q \ne o\] it is a contradiction of rational numbers
For example, \[\sqrt 5 ,\sqrt {11} ,\sqrt {21} \]etc are irrational numbers
Properties of irrational number
1) The addition of an irrational number and rational number gives an irrational number for example \[x = \] irrational\[y = \] rational
\[ \Rightarrow x + y = \] irrational number
2) Multiplication of any irrational number with non-zero rational number results is an irrational number example \[x = \] irrational \[y = \] rational
\[ \Rightarrow x + y = \]irrational
The LCM of two irrational number may or may NOT exists.
The addition or multiplication of two irrational numbers may be rational for example \[\sqrt 2 .\sqrt 2 = 2\] Here \[\sqrt 2 \] is irrational 2 is rational.
Complete step by step answer:
Let us take
\[(\sqrt 3 ,\sqrt 3 )\] are irrational numbers.
Difference b/w \[(\sqrt 3 ,\& - \sqrt 3 \]
\[ = \sqrt 3 , - \sqrt 3 \]
\[ = \sqrt 3 + \sqrt 3 \]
\[ = \sqrt[2]{3}\](irrational number)
Difference between \[\sqrt 5 , - \sqrt 5 \] (irrational number)
\[ \Rightarrow \sqrt 3 - ( - \sqrt 5 )\]
\[ = \sqrt 5 + \sqrt 5 \]
\[ = \sqrt[2]{5}\] (irrational number)
\[\sqrt[4]{3}, - \sqrt[2]{3}\]
difference between \[\sqrt[4]{3} - ( - \sqrt[2]{3}) = \sqrt[6]{3}\] irrational number
Above all options A, B, C are the example of irrational numbers whose difference is an irrational number.
Note:
The decimal expansion of an irrational number is neither terminating nor recurring
Pi\[(\pi )\] is an irrational number because it is non-terminating the approximate value of pi is
The set of an irrational number is NOT closed under the multiplication process unlike the set of rational numbers.
Integers are a rational number but Not irrational.
\[\pi = 3.14159265358\]
\[e = 2.718281845\] are irrational numbers.
An irrational number is represented by using the set difference of the real minus rational numbers in a way \[R - Q\]
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers