
Give examples of two one-one functions \[{{f}_{1}}\] and \[{{f}_{2}}\] from R to R such that \[{{f}_{1}}+{{f}_{2}}:R\to R\] defined by \[\left( {{f}_{1}}+{{f}_{2}} \right)\left( x \right)={{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)\] is not one-one.
Answer
522.6k+ views
Hint: For this question make \[{{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)=\text{constant}\] as y = k is the easiest function which is not one-one. Take \[{{f}_{1}}\left( x \right)\] and \[{{f}_{2}}\left( x \right)\] as linear function in x such that \[{{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)\] is constant.
Here we have to find two one-one functions \[{{f}_{1}}\] and \[{{f}_{2}}\] R to R such that \[\left( {{f}_{1}}+{{f}_{2}} \right)x={{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)\] is not one-one.
We know that one-one function is a function that maps distinct elements of its domain to distinct elements of its co-domain that is for a particular value of x, there is a particular value of y and that value of y should not repeat for any other value of x.
Now, we have to make \[{{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)\] such that it is not one-one.
We know that \[f\left( x \right)=\text{constant}\] is the easiest function which is not one-one because its value of y keeps getting repeated for all values of x.
Therefore, we will choose \[{{f}_{1}}\left( x \right)\] and \[{{f}_{2}}\left( x \right)\] such that
\[{{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)=k\]
Now, we are given that \[{{f}_{1}}\left( x \right)\] and \[{{f}_{2}}\left( x \right)\] must be one-one.
We know that the easiest one-one function is \[y=ax+b:R\to R\] where a and b are constants as it gives different values of y for different values of x.
Therefore, we take \[{{f}_{1}}\left( x \right)=9x+5\].
Now to make \[{{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)\] constant, 9x must disappear.
Therefore, we take \[{{f}_{2}}\left( x \right)=-9x+8\].
Therefore, we get \[{{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)=\left( 9x+5 \right)+\left( -9x+8 \right)\].
\[\Rightarrow {{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)=13\]
Therefore, finally we get
\[{{f}_{1}}\left( x \right)=9x+5\]
\[{{f}_{2}}\left( x \right)=-9x+8\]
which are one-one functions.
Also, we get \[{{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)=13\] which is not a one-one function.
Note: Students could also check if a function is one-one or not by making the line on the graph of the function which is parallel to the x axis. If this line cuts the graph just 1 time then, it is one-one function, otherwise it is not one-one.
Here we have to find two one-one functions \[{{f}_{1}}\] and \[{{f}_{2}}\] R to R such that \[\left( {{f}_{1}}+{{f}_{2}} \right)x={{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)\] is not one-one.
We know that one-one function is a function that maps distinct elements of its domain to distinct elements of its co-domain that is for a particular value of x, there is a particular value of y and that value of y should not repeat for any other value of x.
Now, we have to make \[{{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)\] such that it is not one-one.
We know that \[f\left( x \right)=\text{constant}\] is the easiest function which is not one-one because its value of y keeps getting repeated for all values of x.

Therefore, we will choose \[{{f}_{1}}\left( x \right)\] and \[{{f}_{2}}\left( x \right)\] such that
\[{{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)=k\]
Now, we are given that \[{{f}_{1}}\left( x \right)\] and \[{{f}_{2}}\left( x \right)\] must be one-one.
We know that the easiest one-one function is \[y=ax+b:R\to R\] where a and b are constants as it gives different values of y for different values of x.
Therefore, we take \[{{f}_{1}}\left( x \right)=9x+5\].
Now to make \[{{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)\] constant, 9x must disappear.
Therefore, we take \[{{f}_{2}}\left( x \right)=-9x+8\].

Therefore, we get \[{{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)=\left( 9x+5 \right)+\left( -9x+8 \right)\].
\[\Rightarrow {{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)=13\]
Therefore, finally we get
\[{{f}_{1}}\left( x \right)=9x+5\]
\[{{f}_{2}}\left( x \right)=-9x+8\]
which are one-one functions.
Also, we get \[{{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)=13\] which is not a one-one function.
Note: Students could also check if a function is one-one or not by making the line on the graph of the function which is parallel to the x axis. If this line cuts the graph just 1 time then, it is one-one function, otherwise it is not one-one.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
