Answer
Verified
441.6k+ views
Hint: The ideal gas law also known as the general gas equation, which is the equation of the state of the hypothetical ideal gas. Ideal gas is the good approximation of the behavior of many gases under many conditions although there are several limitations.
Complete answer:
The ideal gas law states that the product of the pressure and the volume of a one-gram molecule of an ideal gas is equal to the product of the absolute temperature of the gas and the universal gas constant.
Given in the question:
Mass of ideal gas = 16g
STP is standard temperature and pressure, the volume at STP will be = 22.4 L
Given volume of the ideal gas = 6.6 L
We can calculate the number of moles by the ratio of given volume of gas at standard temperature and pressure to the volume of gas at standard temperature and pressure
Number of moles = $\dfrac{5.6}{22.4}$mole
The molecular weight of the gas will be equal to the ratio of mass of gas to the number of moles of gas
Molecular weight of the gas = $\dfrac{\left( 16 \right)\left( 22.4 \right)}{5.6}$= 64 g
\[32+16x=\]64 g
The value of x = 2.
Hence the correct answer is option (B) and the gas is $S{{O}_{2}}$.
Note:
An ideal gas is gas which obeys the Charles law, Boyle’s law and the avogadro's law. The ideal gas law fails at the lower temperature and high pressure. It almost fails to obey the heavy gases such as the refrigerants.
Complete answer:
The ideal gas law states that the product of the pressure and the volume of a one-gram molecule of an ideal gas is equal to the product of the absolute temperature of the gas and the universal gas constant.
Given in the question:
Mass of ideal gas = 16g
STP is standard temperature and pressure, the volume at STP will be = 22.4 L
Given volume of the ideal gas = 6.6 L
We can calculate the number of moles by the ratio of given volume of gas at standard temperature and pressure to the volume of gas at standard temperature and pressure
Number of moles = $\dfrac{5.6}{22.4}$mole
The molecular weight of the gas will be equal to the ratio of mass of gas to the number of moles of gas
Molecular weight of the gas = $\dfrac{\left( 16 \right)\left( 22.4 \right)}{5.6}$= 64 g
\[32+16x=\]64 g
The value of x = 2.
Hence the correct answer is option (B) and the gas is $S{{O}_{2}}$.
Note:
An ideal gas is gas which obeys the Charles law, Boyle’s law and the avogadro's law. The ideal gas law fails at the lower temperature and high pressure. It almost fails to obey the heavy gases such as the refrigerants.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE