Given that $\overrightarrow a .\overrightarrow b = 0$ and $\overrightarrow a \times \overrightarrow b = 0$. What can you conclude about the vectors $\overrightarrow a $ and $\overrightarrow b $ ?
Answer
Verified
510k+ views
Hint: Here, we need to draw a conclusion about the vectors $\overrightarrow a $ and $\overrightarrow b $from the statements $\overrightarrow a .\overrightarrow b = 0$ and $\overrightarrow a \times \overrightarrow b = 0$ by considering $\overrightarrow a .\overrightarrow b = \left| a \right|.\left| b \right|.\cos \theta $and $\overrightarrow a \times \overrightarrow b = \left| a \right|.\left| b \right|.\sin \theta $.
Complete step-by-step answer:
Given,
i. $\overrightarrow a .\overrightarrow b = 0$.
Here, $\overrightarrow a .\overrightarrow b = 0$ is the dot product of the vectors $\overrightarrow a $ and $\overrightarrow b $.As, we know the dot product of two vectors can be written as:
$\overrightarrow a .\overrightarrow b = \left| a \right|.\left| b \right|.\cos \theta \to (1)$
Where:
$\left| a \right|$ Is the magnitude of$\overrightarrow a $, $\left| b \right|$is the magnitude of $\overrightarrow b $and $\theta $ is the angle between $\overrightarrow a $ and $\overrightarrow b $.
It is given that $\overrightarrow a .\overrightarrow b = 0$ i.e..,
$\left| a \right|.\left| b \right|.\cos \theta = 0 \to (2)$
So, from equation (2) we can say that the dot product of vectors $\overrightarrow a $ and $\overrightarrow b $is ‘0’ in the following cases.
(i) $\left| a \right| = 0$i.e.., the magnitude of $\overrightarrow a $is zero.
(ii) $\left| b \right| = 0$i.e.., the magnitude of $\overrightarrow b $is zero.
(iii) $\overrightarrow a \bot \overrightarrow b $i.e.., the angle between the vectors is${90^o}$$[\because \cos {90^o} = 0]$.
Hence, we can conclude that $\overrightarrow a .\overrightarrow b = 0$if ‘$\left| a \right| = 0$’or if ‘$\left| b \right| = 0$’or ‘if the vectors are perpendicular to each other.
ii. $\overrightarrow a \times \overrightarrow b = 0$.
Here, $\overrightarrow a \times \overrightarrow b = 0$ is the cross product of the vectors $\overrightarrow a $ and $\overrightarrow b $.As, we know the cross product of two vectors can be written as:
$\overrightarrow a \times \overrightarrow b = \left| a \right|.\left| b \right|.\sin \theta \to (1)$
Where:
$\left| a \right|$ Is the magnitude of$\overrightarrow a $, $\left| b \right|$is the magnitude of $\overrightarrow b $and $\theta $ is the angle between $\overrightarrow a $ and $\overrightarrow b $.
It is given that $\overrightarrow a \times \overrightarrow b = 0$ i.e..,
$\left| a \right|.\left| b \right|.\sin \theta = 0 \to (2)$
So, from equation (2) we can say that the cross product of vectors $\overrightarrow a $ and $\overrightarrow b $is ‘0’ in the following cases
(i) $\left| a \right| = 0$i.e.., the magnitude of $\overrightarrow a $is zero.
(ii) $\left| b \right| = 0$i.e.., the magnitude of $\overrightarrow b $is zero.
(iii)$\overrightarrow a \parallel \overrightarrow b $i.e.., the angle between the vectors is${0^o}$$[\because \sin {0^o} = 0]$.
Hence, we can conclude that $\overrightarrow a \times \overrightarrow b = 0$if ‘$\left| a \right| = 0$’or if ‘$\left| b \right| = 0$’or ‘if the vectors are parallel to each other.
Note: The dot product of two vectors will be $'0'$ if the vectors are perpendicular to each other (in case vectors are non-zero).Similarly, the cross product of two vectors will be $'0'$ if the vectors are parallel to each other (in case vectors are non-zero).
Complete step-by-step answer:
Given,
i. $\overrightarrow a .\overrightarrow b = 0$.
Here, $\overrightarrow a .\overrightarrow b = 0$ is the dot product of the vectors $\overrightarrow a $ and $\overrightarrow b $.As, we know the dot product of two vectors can be written as:
$\overrightarrow a .\overrightarrow b = \left| a \right|.\left| b \right|.\cos \theta \to (1)$
Where:
$\left| a \right|$ Is the magnitude of$\overrightarrow a $, $\left| b \right|$is the magnitude of $\overrightarrow b $and $\theta $ is the angle between $\overrightarrow a $ and $\overrightarrow b $.
It is given that $\overrightarrow a .\overrightarrow b = 0$ i.e..,
$\left| a \right|.\left| b \right|.\cos \theta = 0 \to (2)$
So, from equation (2) we can say that the dot product of vectors $\overrightarrow a $ and $\overrightarrow b $is ‘0’ in the following cases.
(i) $\left| a \right| = 0$i.e.., the magnitude of $\overrightarrow a $is zero.
(ii) $\left| b \right| = 0$i.e.., the magnitude of $\overrightarrow b $is zero.
(iii) $\overrightarrow a \bot \overrightarrow b $i.e.., the angle between the vectors is${90^o}$$[\because \cos {90^o} = 0]$.
Hence, we can conclude that $\overrightarrow a .\overrightarrow b = 0$if ‘$\left| a \right| = 0$’or if ‘$\left| b \right| = 0$’or ‘if the vectors are perpendicular to each other.
ii. $\overrightarrow a \times \overrightarrow b = 0$.
Here, $\overrightarrow a \times \overrightarrow b = 0$ is the cross product of the vectors $\overrightarrow a $ and $\overrightarrow b $.As, we know the cross product of two vectors can be written as:
$\overrightarrow a \times \overrightarrow b = \left| a \right|.\left| b \right|.\sin \theta \to (1)$
Where:
$\left| a \right|$ Is the magnitude of$\overrightarrow a $, $\left| b \right|$is the magnitude of $\overrightarrow b $and $\theta $ is the angle between $\overrightarrow a $ and $\overrightarrow b $.
It is given that $\overrightarrow a \times \overrightarrow b = 0$ i.e..,
$\left| a \right|.\left| b \right|.\sin \theta = 0 \to (2)$
So, from equation (2) we can say that the cross product of vectors $\overrightarrow a $ and $\overrightarrow b $is ‘0’ in the following cases
(i) $\left| a \right| = 0$i.e.., the magnitude of $\overrightarrow a $is zero.
(ii) $\left| b \right| = 0$i.e.., the magnitude of $\overrightarrow b $is zero.
(iii)$\overrightarrow a \parallel \overrightarrow b $i.e.., the angle between the vectors is${0^o}$$[\because \sin {0^o} = 0]$.
Hence, we can conclude that $\overrightarrow a \times \overrightarrow b = 0$if ‘$\left| a \right| = 0$’or if ‘$\left| b \right| = 0$’or ‘if the vectors are parallel to each other.
Note: The dot product of two vectors will be $'0'$ if the vectors are perpendicular to each other (in case vectors are non-zero).Similarly, the cross product of two vectors will be $'0'$ if the vectors are parallel to each other (in case vectors are non-zero).
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How many ounces are in 500 mL class 8 maths CBSE
Which king started the organization of the Kumbh fair class 8 social science CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
Advantages and disadvantages of science