Answer
Verified
496.8k+ views
Hint: Here we solve the problem by finding the individual probability of events for not solving the problem because here the events have solved the problem individually. If suppose $p(x)$is the probability of solving some x work then 1-p(x) will be the probability for not solving work.
Complete step-by-step answer:
Now here let us consider that A be an event that solves problem A and also B be an event that solves problem B.
According to the data we can say that
Probability that the event A can solve problem A is $\dfrac{2}{3}$ $ \Rightarrow P(A) = \dfrac{2}{3}$
Probability that the event B can solve the problem B is$\dfrac{3}{5}$ $ \Rightarrow P(B) = \dfrac{3}{5}$
Here we have to find the probability that none of two will be able to solve the problem.
So here we have to find the value of $P(\bar A.\bar B)$.
\[ \Rightarrow P(\bar A.\bar B) = P(\bar A)P(\bar B)\]
Since we know that the event A and B has solved the problem individually so we should also find their individual probability of not solving the problem.
\[ \Rightarrow P(\bar A.\bar B) = P(\bar A)P(\bar B)\]
$ \Rightarrow P(\bar A.\bar B) = (1 - P(A))(1 - P(B))$
$ \Rightarrow P(\bar A.\bar B) = \left( {1 - \dfrac{2}{3}} \right)\left( {1 - \dfrac{3}{5}} \right)$
$ \Rightarrow P(\bar A\bar B) = \dfrac{1}{3} \times \dfrac{2}{5}$
$ \Rightarrow P(\bar A\bar B) = \dfrac{2}{{15}}$
Therefore the probability that none of the two events A and B will be able to solve the problem = $\dfrac{2}{{15}}$.
Note: In this problem there are two events A and First we have to observe that event A and event B are working independently, which means the probability of event A solving (or not solving) the problem is entirely independent of the probability of event B solving (or not solving) the problem. Based on this we have to find the values and use them according to it.
Complete step-by-step answer:
Now here let us consider that A be an event that solves problem A and also B be an event that solves problem B.
According to the data we can say that
Probability that the event A can solve problem A is $\dfrac{2}{3}$ $ \Rightarrow P(A) = \dfrac{2}{3}$
Probability that the event B can solve the problem B is$\dfrac{3}{5}$ $ \Rightarrow P(B) = \dfrac{3}{5}$
Here we have to find the probability that none of two will be able to solve the problem.
So here we have to find the value of $P(\bar A.\bar B)$.
\[ \Rightarrow P(\bar A.\bar B) = P(\bar A)P(\bar B)\]
Since we know that the event A and B has solved the problem individually so we should also find their individual probability of not solving the problem.
\[ \Rightarrow P(\bar A.\bar B) = P(\bar A)P(\bar B)\]
$ \Rightarrow P(\bar A.\bar B) = (1 - P(A))(1 - P(B))$
$ \Rightarrow P(\bar A.\bar B) = \left( {1 - \dfrac{2}{3}} \right)\left( {1 - \dfrac{3}{5}} \right)$
$ \Rightarrow P(\bar A\bar B) = \dfrac{1}{3} \times \dfrac{2}{5}$
$ \Rightarrow P(\bar A\bar B) = \dfrac{2}{{15}}$
Therefore the probability that none of the two events A and B will be able to solve the problem = $\dfrac{2}{{15}}$.
Note: In this problem there are two events A and First we have to observe that event A and event B are working independently, which means the probability of event A solving (or not solving) the problem is entirely independent of the probability of event B solving (or not solving) the problem. Based on this we have to find the values and use them according to it.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE