How do you graph $r = 1 - \sin \left( \theta \right)$ ?
Answer
Verified
447.9k+ views
Hint:The given expression is $r = 1 - \sin \left( \theta \right)$ which produces a cardioid. In the given expression $r = 1 - \sin \left( \theta \right)$ try to substitute different values for $\theta $ and find the corresponding values of $r$ and plot the graph for the same values.
Complete step by step answer:
The given expression that is $r = 1 - \sin \left( \theta \right)$ which is a polar coordinate produces the cardioid. Cardioid is nothing but a curve or a graph that somewhat looks like a heart-shaped curve.
The graph of a cardioid looks as shown below.
Now, to draw a graph for $r = 1 - \sin \left( \theta \right)$ , try to substitute different values for $\theta $ which varies from $0$ to $2\pi $.
The below table gives us the values of sine function for different values:
$\begin{array}{*{20}{c}}
\theta &{{0^ \circ }}&{{{30}^ \circ }}&{{{45}^ \circ }}&{{{60}^ \circ }}&{{{90}^ \circ }}&{{{180}^ \circ }}&{{{270}^ \circ }}&{{{360}^ \circ }} \\
{\sin \theta }&0&{\dfrac{1}{2}}&{\dfrac{{\sqrt 2 }}{2}}&{\dfrac{1}{2}}&1&0&{ - 1}&0
\end{array}$
Now we consider different values for $\theta $ to which we need to find the corresponding values of $r$ .
So let $\theta = 0$ now to find the corresponding value of $r$ we can write as below,
$ \Rightarrow r = 1 - \sin \left( {{0^ \circ }} \right) = 1 - 0 = 1$
At $\theta = {30^ \circ }$ the value of $r$ is
$ \Rightarrow r = 1 - \sin \left( {{{30}^ \circ }} \right) = 1 - \dfrac{1}{2} = \dfrac{1}{2}$
At $\theta = {60^ \circ }$ the value of $r$ is
$ \Rightarrow r = 1 - \sin \left( {{{30}^ \circ }} \right) = 1 - \dfrac{1}{2} = \dfrac{1}{2}$
At $\theta = {90^ \circ }$ the value of $r$ we get as
$ \Rightarrow r = 1 - \sin \left( {{{90}^ \circ }} \right) = 1 - 1 = 0$
In the same way the values of $r$ can be listed as below for different values of $\theta $ .
\[\begin{array}{*{20}{c}}
\theta &{{0^ \circ }}&{{{30}^ \circ }}&{{{60}^ \circ }}&{{{90}^ \circ }}&{{{180}^ \circ }}&{{{270}^ \circ }}&{{{360}^ \circ }} \\
r&1&{\dfrac{1}{2}}&{\dfrac{1}{2}}&0&1&2&1
\end{array}\]
Now, plot the graph for the above values. Which is shown as in the below figure.
Therefore, the graph for the given expression $r = 1 - \sin \left( \theta \right)$ is as shown in the above figure.
Note: Whenever they ask us to draw a graph by giving an equation, then just take some values for one unknown that is for $\theta $ in the given equation and find the corresponding values of another unknown that is $r$ in this problem. Plot the same on a graph sheet as we did above.
Complete step by step answer:
The given expression that is $r = 1 - \sin \left( \theta \right)$ which is a polar coordinate produces the cardioid. Cardioid is nothing but a curve or a graph that somewhat looks like a heart-shaped curve.
The graph of a cardioid looks as shown below.
Now, to draw a graph for $r = 1 - \sin \left( \theta \right)$ , try to substitute different values for $\theta $ which varies from $0$ to $2\pi $.
The below table gives us the values of sine function for different values:
$\begin{array}{*{20}{c}}
\theta &{{0^ \circ }}&{{{30}^ \circ }}&{{{45}^ \circ }}&{{{60}^ \circ }}&{{{90}^ \circ }}&{{{180}^ \circ }}&{{{270}^ \circ }}&{{{360}^ \circ }} \\
{\sin \theta }&0&{\dfrac{1}{2}}&{\dfrac{{\sqrt 2 }}{2}}&{\dfrac{1}{2}}&1&0&{ - 1}&0
\end{array}$
Now we consider different values for $\theta $ to which we need to find the corresponding values of $r$ .
So let $\theta = 0$ now to find the corresponding value of $r$ we can write as below,
$ \Rightarrow r = 1 - \sin \left( {{0^ \circ }} \right) = 1 - 0 = 1$
At $\theta = {30^ \circ }$ the value of $r$ is
$ \Rightarrow r = 1 - \sin \left( {{{30}^ \circ }} \right) = 1 - \dfrac{1}{2} = \dfrac{1}{2}$
At $\theta = {60^ \circ }$ the value of $r$ is
$ \Rightarrow r = 1 - \sin \left( {{{30}^ \circ }} \right) = 1 - \dfrac{1}{2} = \dfrac{1}{2}$
At $\theta = {90^ \circ }$ the value of $r$ we get as
$ \Rightarrow r = 1 - \sin \left( {{{90}^ \circ }} \right) = 1 - 1 = 0$
In the same way the values of $r$ can be listed as below for different values of $\theta $ .
\[\begin{array}{*{20}{c}}
\theta &{{0^ \circ }}&{{{30}^ \circ }}&{{{60}^ \circ }}&{{{90}^ \circ }}&{{{180}^ \circ }}&{{{270}^ \circ }}&{{{360}^ \circ }} \\
r&1&{\dfrac{1}{2}}&{\dfrac{1}{2}}&0&1&2&1
\end{array}\]
Now, plot the graph for the above values. Which is shown as in the below figure.
Therefore, the graph for the given expression $r = 1 - \sin \left( \theta \right)$ is as shown in the above figure.
Note: Whenever they ask us to draw a graph by giving an equation, then just take some values for one unknown that is for $\theta $ in the given equation and find the corresponding values of another unknown that is $r$ in this problem. Plot the same on a graph sheet as we did above.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE