
graph \[V - I\] of a conductor at two different temperatures is shown in fig. the ratio of temperature $\dfrac{{{T_1}}}{{{T_2}}}$ is:
(A) ${\tan ^2}\theta $
B) ${\cot ^2}\theta $
C) ${\sec ^2}\theta $
D) $\cos e{c^2}\theta $


Answer
140.7k+ views
Hint As we can see in the figure that $V$ and $I$ are making a right angle triangle, and ${T_1}$ is making angle $\theta $ with voltage and similarly ${T_2}$ is making $\theta $ angle with current. So, we apply trigonometry functions to solve this problem.
Complete Step by step solution
As per figure, we can see that
${T_1} = \tan \theta $
And ${T_2} = \tan \left( {90 - \theta } \right)$
We know that the value of $\tan \left( {90 - \theta } \right)$will become $\cot \theta $
Now, we can say that ${T_2} = \cot \theta $
To find out the ratio of $\dfrac{{{T_1}}}{{{T_2}}}......(1)$
We will put the values of ${T_1}$ and ${T_2}$in equation $(1)$
$\dfrac{{{T_1}}}{{{T_2}}} = \dfrac{{\tan \theta }}{{\cot \theta }}......(2)$
We know that $\cot \theta = \dfrac{1}{{\tan \theta }}$, we put it equation $(2)$
$\dfrac{{{T_1}}}{{{T_2}}} = {\tan ^2}\theta $
Hence, option a is the right answer
Note We should keep in mind trigonometry formulas to solve this problem. As we know that $90 - \theta $means value will lies in first quadrant and in first quadrant $\tan \theta $ will convert in $\cot \theta $, so the value of $\tan \left( {90 - \theta } \right)$ will become $\cot \theta $
Additional information $V - I$ graph stands for a graph of voltage and current, and it shows us properties of a conductor or device. $V - I$ Graph tells valuable information about the resistance in the circuit and breakdown of the electronic component. This information helps us place the electronic component in an electronic circuit. Voltage lies on $y - axis$ and current lies on $x - axis$, resistance tells us the type of the graph. If resistance is constant, the graph will be linear and if resistance is not constant means variable then the graph will be non-linear.
There are different types of $V - I$ graphs, which are as below:
Linear $V - I$ graph
Non-linear $V - I$ graph
$V - I$ Characteristics of SCR
$V - I$ Characteristics of LED
$V - I$ Characteristics of MOSFET
$V - I$ Characteristics of PN Junction Diode
$V - I$ Characteristics of Zener Diode
Complete Step by step solution
As per figure, we can see that
${T_1} = \tan \theta $
And ${T_2} = \tan \left( {90 - \theta } \right)$
We know that the value of $\tan \left( {90 - \theta } \right)$will become $\cot \theta $
Now, we can say that ${T_2} = \cot \theta $
To find out the ratio of $\dfrac{{{T_1}}}{{{T_2}}}......(1)$
We will put the values of ${T_1}$ and ${T_2}$in equation $(1)$
$\dfrac{{{T_1}}}{{{T_2}}} = \dfrac{{\tan \theta }}{{\cot \theta }}......(2)$
We know that $\cot \theta = \dfrac{1}{{\tan \theta }}$, we put it equation $(2)$
$\dfrac{{{T_1}}}{{{T_2}}} = {\tan ^2}\theta $
Hence, option a is the right answer
Note We should keep in mind trigonometry formulas to solve this problem. As we know that $90 - \theta $means value will lies in first quadrant and in first quadrant $\tan \theta $ will convert in $\cot \theta $, so the value of $\tan \left( {90 - \theta } \right)$ will become $\cot \theta $
Additional information $V - I$ graph stands for a graph of voltage and current, and it shows us properties of a conductor or device. $V - I$ Graph tells valuable information about the resistance in the circuit and breakdown of the electronic component. This information helps us place the electronic component in an electronic circuit. Voltage lies on $y - axis$ and current lies on $x - axis$, resistance tells us the type of the graph. If resistance is constant, the graph will be linear and if resistance is not constant means variable then the graph will be non-linear.
There are different types of $V - I$ graphs, which are as below:
Linear $V - I$ graph
Non-linear $V - I$ graph
$V - I$ Characteristics of SCR
$V - I$ Characteristics of LED
$V - I$ Characteristics of MOSFET
$V - I$ Characteristics of PN Junction Diode
$V - I$ Characteristics of Zener Diode
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
