Answer
Verified
428.7k+ views
Hint: In this problem, we have to graph the given trigonometric equation. We can use a trigonometric identity and we can simplify the given trigonometric expression to get its simplest form. Then we will get an equation for which we can plot the graph by assuming some values.
Complete step by step solution:
We know that the given trigonometric equation is,
\[y=\sin \left( x+\dfrac{\pi }{2} \right)\]
We know that the trigonometric identity can be used in this problem is,
\[\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b\]
We can now compare the above identity and the given trigonometric equation, we get
a = x, b = \[\dfrac{\pi }{2}\]
we can substitute these values in the trigonometric identity, we get
\[\Rightarrow y=\sin x\cos \left( \dfrac{\pi }{2} \right)+\cos x\sin \left( \dfrac{\pi }{2} \right)\]
Now we can substitute the trigonometric degree values in the above step for,
\[\begin{align}
& \cos \dfrac{\pi }{2}=0 \\
& \sin \dfrac{\pi }{2}=1 \\
\end{align}\]
we can substitute the above degree values, we get
\[\begin{align}
& \Rightarrow y=\sin x\times 0+\cos x\times 1 \\
& \Rightarrow y=\cos x \\
\end{align}\]
We can now find the x and y-intercept to plot the points
We know that at y-intercept the value of x is zero.
We can substitute x = 0, we get
\[\Rightarrow y=\cos \left( 0 \right)\]
We know that cos 0 = 1.
Therefore, the y-intercept is \[\left( 0,1 \right)\].
We know that at x-intercept the value of y is zero.
We can substitute y = 0, we get
\[\Rightarrow 0=\cos x\]
We know that when x = \[\pm \dfrac{\pi }{2}\], then the value of y becomes 0.
Therefore, the x-intercepts are \[\left( \dfrac{\pi }{2},0 \right)\left( -\dfrac{\pi }{2},0 \right)\].
Now we can plot the graph
Note: Students make mistakes while finding the correct degree values, which should be concentrated. We should know some trigonometric identities, formula, properties and degree values to solve these types of problems.
Complete step by step solution:
We know that the given trigonometric equation is,
\[y=\sin \left( x+\dfrac{\pi }{2} \right)\]
We know that the trigonometric identity can be used in this problem is,
\[\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b\]
We can now compare the above identity and the given trigonometric equation, we get
a = x, b = \[\dfrac{\pi }{2}\]
we can substitute these values in the trigonometric identity, we get
\[\Rightarrow y=\sin x\cos \left( \dfrac{\pi }{2} \right)+\cos x\sin \left( \dfrac{\pi }{2} \right)\]
Now we can substitute the trigonometric degree values in the above step for,
\[\begin{align}
& \cos \dfrac{\pi }{2}=0 \\
& \sin \dfrac{\pi }{2}=1 \\
\end{align}\]
we can substitute the above degree values, we get
\[\begin{align}
& \Rightarrow y=\sin x\times 0+\cos x\times 1 \\
& \Rightarrow y=\cos x \\
\end{align}\]
We can now find the x and y-intercept to plot the points
We know that at y-intercept the value of x is zero.
We can substitute x = 0, we get
\[\Rightarrow y=\cos \left( 0 \right)\]
We know that cos 0 = 1.
Therefore, the y-intercept is \[\left( 0,1 \right)\].
We know that at x-intercept the value of y is zero.
We can substitute y = 0, we get
\[\Rightarrow 0=\cos x\]
We know that when x = \[\pm \dfrac{\pi }{2}\], then the value of y becomes 0.
Therefore, the x-intercepts are \[\left( \dfrac{\pi }{2},0 \right)\left( -\dfrac{\pi }{2},0 \right)\].
Now we can plot the graph
Note: Students make mistakes while finding the correct degree values, which should be concentrated. We should know some trigonometric identities, formula, properties and degree values to solve these types of problems.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers