Answer
Verified
444k+ views
Hint: H-alpha is a spectral line which is deep-red. This can be seen in the Balmer series for the shortest transition. For the frequency, we will first find the
corresponding energy in the 3rd orbit 2nd orbit and then find the difference. We will use the
Planck’s formula which relates energy and the frequency to find the answer.
Formula used:
The formula which relates energy and the frequency is given below:
$E = hf$
Where, $h$ is the Planck’s constant, $f$ is the frequency, $E$ is the energy.
Complete step by step solution:
There are six series in hydrogen spectrum they are
Lyman series, Balmer series, Paschen series, Brackett series, Pfund series and Humphreys series. Out of these six only Balmer series is imaginatively called as alpha, beta, gamma and so on…
so ${H_\alpha }$ electron transition in hydrogen atom must take place 3rd orbital to 2nd orbital
i.e; electron jumps from n=3 to n=2.
For hydrogen atom energy in ${n^{th}}$orbital
${E_n} = - {{13.6}}{{{n^2}}}eV$
So, for n=3
$
{E_3} = - {{13.6}}{{{3^2}}}eV \\
\Rightarrow {E_3} = - 1.51eV \\ $
And for n=2
$
{E_2} = - {{13.6}}{{{2^2}}}eV \\
\Rightarrow {E_2} = - 3.4eV \\ $
Energy difference between these two shells will be
$
\Delta E = {E_3} - {E_2} \\
\Rightarrow \Delta E = - 1.51 - ( - 3.4) \\
\Rightarrow \Delta E = 1.89eV \\ $
This will be the energy of the emitted photon.
Using planck's quantum theory we have
$E = hf$
$
\Rightarrow f = {E}{h} \\
\Rightarrow f = {{1.89 \times 1.6 \times {{10}^{ - 19}}}}{{6.63 \times 10 \times {{10}^{ - 34}}}} \\
\therefore f = 4.56 \times {10^{14}}Hz \\ $
Hence frequency of ${H_\alpha }$is $4.56 \times {10^{14}}Hz$.
Note:The Balmer series lines that we see are imaginatively called alpha, beta, gamma and so on…, so ${H_\alpha }$ line corresponds to the first line of the Balmer series in other words ${H_\alpha }$ spectrum is produced when electrons from a hydrogen atom jumps from 3rd orbital to 2nd orbital as for Balmer series lowest orbital is 2nd orbital. It is important to remember that higher the energy emitted by the electron, higher will be its frequency.
corresponding energy in the 3rd orbit 2nd orbit and then find the difference. We will use the
Planck’s formula which relates energy and the frequency to find the answer.
Formula used:
The formula which relates energy and the frequency is given below:
$E = hf$
Where, $h$ is the Planck’s constant, $f$ is the frequency, $E$ is the energy.
Complete step by step solution:
There are six series in hydrogen spectrum they are
Lyman series, Balmer series, Paschen series, Brackett series, Pfund series and Humphreys series. Out of these six only Balmer series is imaginatively called as alpha, beta, gamma and so on…
so ${H_\alpha }$ electron transition in hydrogen atom must take place 3rd orbital to 2nd orbital
i.e; electron jumps from n=3 to n=2.
For hydrogen atom energy in ${n^{th}}$orbital
${E_n} = - {{13.6}}{{{n^2}}}eV$
So, for n=3
$
{E_3} = - {{13.6}}{{{3^2}}}eV \\
\Rightarrow {E_3} = - 1.51eV \\ $
And for n=2
$
{E_2} = - {{13.6}}{{{2^2}}}eV \\
\Rightarrow {E_2} = - 3.4eV \\ $
Energy difference between these two shells will be
$
\Delta E = {E_3} - {E_2} \\
\Rightarrow \Delta E = - 1.51 - ( - 3.4) \\
\Rightarrow \Delta E = 1.89eV \\ $
This will be the energy of the emitted photon.
Using planck's quantum theory we have
$E = hf$
$
\Rightarrow f = {E}{h} \\
\Rightarrow f = {{1.89 \times 1.6 \times {{10}^{ - 19}}}}{{6.63 \times 10 \times {{10}^{ - 34}}}} \\
\therefore f = 4.56 \times {10^{14}}Hz \\ $
Hence frequency of ${H_\alpha }$is $4.56 \times {10^{14}}Hz$.
Note:The Balmer series lines that we see are imaginatively called alpha, beta, gamma and so on…, so ${H_\alpha }$ line corresponds to the first line of the Balmer series in other words ${H_\alpha }$ spectrum is produced when electrons from a hydrogen atom jumps from 3rd orbital to 2nd orbital as for Balmer series lowest orbital is 2nd orbital. It is important to remember that higher the energy emitted by the electron, higher will be its frequency.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE