Answer
Verified
432k+ views
Hint: The Henderson-Hasselbalch equation is a mathematical equation which gives relation between the pH of the solution and the $p{K_a}$ which is equal to the $ - \log {K_a}$. The ${K_a}$ is the acid dissociation constant of the weak base. We need to determine the ratio of weak acid ${H_2}C{O_3}$to its conjugate base $HCO_3^ - $.
Complete step by step answer:
The equation which relates the pH of an aqueous solution of an acid to the acid dissociation constant of the acid is described as the Henderson-Hasselbalch equation.
The equation is given as shown below.
$pH = p{K_a} + \log \left( {\dfrac{{[Conjugate\;base]}}{{[weak\;acid]}}} \right)$
In this question it is given that the weak acid is ${H_2}C{O_3}$and its conjugate base is $HCO_3^ - $.
Substitute it in the given equation.
$ \Rightarrow pH = p{K_a} + \log \left( {\dfrac{{[HCO_3^ - ]}}{{[{H_2}C{O_3}]}}} \right)$
$K{a_1}({H_2}C{O_3}) = 4.5\times{10^{ - 7}}$
The $p{K_a}$ value is equal to the negative logarithm of acid dissociation constant of the weak acid.
It is given as shown below.
$p{K_a} = - \log \left[ {{K_a}} \right]$
Where,
${K_a}$ is the acid dissociation constant of the weak acid.
Substitute the value in the given equation.
$ \Rightarrow p{K_a} = - \log \left[ {4.5\times{{10}^{ - 7}}} \right]$
$ \Rightarrow p{K_a} = 6.4$
It is given that the pH is 7.40
Now we need to determine the ratio which exists between the concentration of the conjugate base, $HCO_3^ - $ and the concentration of the weak acid ${H_2}C{O_3}$.
Substitute the value in the equation.
$ \Rightarrow 7.40 = 6.4 + {\log _{10}}\left( {\dfrac{{[HCO_3^ - ]}}{{[{H_2}C{O_3}]}}} \right)$
$ \Rightarrow {\log _{10}}\left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = 7.4 - 6.4$
$ \Rightarrow {\log _{10}}\left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = 1.0$
$ \Rightarrow \left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = {10^{1.0}}$
$ \Rightarrow \left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = 10$
$ \Rightarrow ([HCO_3^ - ]:[{H_2}C{O_3}]) = 10:1$
Therefore, the ratio of ${H_2}C{O_3}$ to $HCO_3^ - $ in blood having a pH of 7.40 is 10:1.
Note: The $p{K_a}$ value measures the strength of the acid is solution. The weak acid has $p{K_a}$ value ranging from 2-12 in water. The Henderson-Hasselbalch equation is also used to determine the pH of the buffer solution and the equilibrium pH in an acid-base reaction.
Complete step by step answer:
The equation which relates the pH of an aqueous solution of an acid to the acid dissociation constant of the acid is described as the Henderson-Hasselbalch equation.
The equation is given as shown below.
$pH = p{K_a} + \log \left( {\dfrac{{[Conjugate\;base]}}{{[weak\;acid]}}} \right)$
In this question it is given that the weak acid is ${H_2}C{O_3}$and its conjugate base is $HCO_3^ - $.
Substitute it in the given equation.
$ \Rightarrow pH = p{K_a} + \log \left( {\dfrac{{[HCO_3^ - ]}}{{[{H_2}C{O_3}]}}} \right)$
$K{a_1}({H_2}C{O_3}) = 4.5\times{10^{ - 7}}$
The $p{K_a}$ value is equal to the negative logarithm of acid dissociation constant of the weak acid.
It is given as shown below.
$p{K_a} = - \log \left[ {{K_a}} \right]$
Where,
${K_a}$ is the acid dissociation constant of the weak acid.
Substitute the value in the given equation.
$ \Rightarrow p{K_a} = - \log \left[ {4.5\times{{10}^{ - 7}}} \right]$
$ \Rightarrow p{K_a} = 6.4$
It is given that the pH is 7.40
Now we need to determine the ratio which exists between the concentration of the conjugate base, $HCO_3^ - $ and the concentration of the weak acid ${H_2}C{O_3}$.
Substitute the value in the equation.
$ \Rightarrow 7.40 = 6.4 + {\log _{10}}\left( {\dfrac{{[HCO_3^ - ]}}{{[{H_2}C{O_3}]}}} \right)$
$ \Rightarrow {\log _{10}}\left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = 7.4 - 6.4$
$ \Rightarrow {\log _{10}}\left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = 1.0$
$ \Rightarrow \left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = {10^{1.0}}$
$ \Rightarrow \left( {\dfrac{{\left[ {HCO_3^ - } \right]}}{{{H_2}C{O_3}}}} \right) = 10$
$ \Rightarrow ([HCO_3^ - ]:[{H_2}C{O_3}]) = 10:1$
Therefore, the ratio of ${H_2}C{O_3}$ to $HCO_3^ - $ in blood having a pH of 7.40 is 10:1.
Note: The $p{K_a}$ value measures the strength of the acid is solution. The weak acid has $p{K_a}$ value ranging from 2-12 in water. The Henderson-Hasselbalch equation is also used to determine the pH of the buffer solution and the equilibrium pH in an acid-base reaction.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE