Hot water cools from $60{}^\circ C$ to $50{}^\circ C$ in the first 10 minutes and to $42{}^\circ C$ in the next 10 minutes. The temperature of the surroundings is:
A. $25{}^\circ C$
B. $10{}^\circ C$
C. $15{}^\circ C$
D. $20{}^\circ C$
Answer
Verified
466.2k+ views
Hint: We could solve the question by using Newton’s law of cooling. We are given two cases, one where the temperature cools from $60{}^\circ C$ to $50{}^\circ C$ and then from $50{}^\circ C$ to $42{}^\circ C$. We could substitute these values in the expression of Newton’s law of cooling and thus form two linear equations in two variables and hence solve them to get the surrounding temperature.
Formula used:
Newton’s law of cooling,
$\Rightarrow {{T}_{t}}={{T}_{s}}+\left( {{T}_{0}}-{{T}_{s}} \right){{e}^{-Kt}}$
Complete step-by-step solution
We are given some hot water that cools from $60{}^\circ C$ to $50{}^\circ C$ in the first 10 minutes and then it further cools down to $42{}^\circ C$ in the next 10 minutes. With this information, we are asked to find the temperature of the surroundings.
Newton’s law of cooling states that the rate of loss of heat $\left( -\dfrac{dQ}{dt} \right)$ is directly proportional to the difference of temperature of body and the surroundings $\left( \Delta T=\left( T-{{T}_{s}} \right) \right)$. But it is to be noted that this law only holds good for small differences in temperature.
$-\dfrac{dQ}{dt}\propto \left( T-{{T}_{s}} \right)$
$\Rightarrow -\dfrac{dQ}{dt}=k\left( T-{{T}_{s}} \right)$ ……………………….. (1)
Where,
$T$ = temperature of the body
${{T}_{s}}$ = temperature of the surroundings
Also, k is a positive constant that depends upon the area and nature of the surface of the body.
Let,
m = mass of a body
s = specific heat capacity
${{T}_{s}}$ = temperature of the surroundings
$T$ = temperature of the body
If the temperature reduces by $dT$ in time $dt$, then heat lost is given by,
$dQ=msdT$
Rate of loss of heat could be given by,
$\dfrac{dQ}{dt}=ms\dfrac{dT}{dt}$ ………………………. (2)
From (1) and (2), we have,
$\Rightarrow -ms\dfrac{dT}{dt}=k\left( T-{{T}_{s}} \right)$
$\Rightarrow \dfrac{dT}{T-{{T}_{s}}}=-\dfrac{k}{ms}dt=-Kdt$ ………………………. (3)
Where, $K=\dfrac{k}{ms}$
Let,
${{T}_{0}}$ = temperature of the body at time t=0
${{T}_{t}}$ = temperature of the body at time t
Integrating (3) on both sides,
$\int\limits_{{{T}_{0}}}^{{{T}_{t}}}{\dfrac{dT}{T-{{T}_{s}}}}=-K\int\limits_{0}^{t}{dt}$
We know that, $\int{\dfrac{1}{x}}dx=\ln x$
$\Rightarrow \left[ \ln \left( T-{{T}_{s}} \right) \right]_{{{T}_{0}}}^{{{T}_{t}}}=-K\left[ t \right]_{0}^{t}$
$\Rightarrow \ln \left( {{T}_{t}}-{{T}_{s}} \right)-\ln \left( {{T}_{0}}-{{T}_{s}} \right)=-K\left( t-0 \right)$
But,$\ln a-\ln b=\ln \dfrac{a}{b}$
$\Rightarrow \ln \left( \dfrac{{{T}_{t}}-{{T}_{s}}}{{{T}_{0}}-{{T}_{s}}} \right)=-Kt$
Taking antilog on both sides,
$\Rightarrow \dfrac{\left( {{T}_{t}}-{{T}_{s}} \right)}{\left( {{T}_{0}}-{{T}_{s}} \right)}={{e}^{-Kt}}$
$\Rightarrow {{T}_{t}}={{T}_{s}}+\left( {{T}_{0}}-{{T}_{s}} \right){{e}^{-Kt}}$…………………….. (4)
We can now substitute the given values in this equation to find the surrounding temperature.
Case 1: Temperature is decreased from $60{}^\circ C$ to $50{}^\circ C$ in first 10 minutes
$50={{T}_{s}}+\left( 60-{{T}_{s}} \right){{e}^{-10K}}$
$\Rightarrow 50={{T}_{s}}\left( 1-{{e}^{-10K}} \right)+60{{e}^{-10K}}$
Let,
$\Rightarrow {{T}_{s}}\left( 1-{{e}^{-10K}} \right)=a$…………………… (5)
$\Rightarrow {{e}^{-10K}}=b$ ………………………. (6)
$\Rightarrow 50=a+60b$ …………………….. (7)
Case 2: Temperature is further decreased from $50{}^\circ C$ to $42{}^\circ C$ in next 10 minutes
$\Rightarrow 42={{T}_{s}}+\left( 50-{{T}_{s}} \right){{e}^{-10K}}$
$\Rightarrow 42={{T}_{s}}\left( 1-{{e}^{-10K}} \right)+50{{e}^{-10K}}$
$\Rightarrow 42=a+50b$ ……………………… (8)
Subtracting (8) from (7),
$\Rightarrow 8=10b$
$\Rightarrow b=\dfrac{4}{5}$ …………… (9)
Adding (7) and (8) gives,
$\Rightarrow 92=2a+110b$
$\Rightarrow 2a+110\times \dfrac{4}{5}=92$
$\Rightarrow 2a=4$
$\Rightarrow a=2$ ………………. (10)
From (6) and (9),
$\Rightarrow b={{e}^{-10K}}=\dfrac{4}{5}$
From (5) and (10),
$\Rightarrow a={{T}_{s}}\left( 1-{{e}^{-10K}} \right)=2$
$\Rightarrow {{T}_{s}}\left( 1-\dfrac{4}{5} \right)=2$
$\Rightarrow \dfrac{{{T}_{s}}}{5}=2$
$\Rightarrow {{T}_{s}}=10{}^\circ C$
Therefore, the temperature of the surroundings is $10{}^\circ C$.
Hence, the answer to the question is option B.
Note: Though for conceptual clarity we have derived the expression for Newton’s law of cooling you shouldn’t necessarily do that. You could simply memorize the standard expression and then simply substitute the given values and hence get the answer. In case you are not able to recall the expression, you can derive it as shown above.
Formula used:
Newton’s law of cooling,
$\Rightarrow {{T}_{t}}={{T}_{s}}+\left( {{T}_{0}}-{{T}_{s}} \right){{e}^{-Kt}}$
Complete step-by-step solution
We are given some hot water that cools from $60{}^\circ C$ to $50{}^\circ C$ in the first 10 minutes and then it further cools down to $42{}^\circ C$ in the next 10 minutes. With this information, we are asked to find the temperature of the surroundings.
Newton’s law of cooling states that the rate of loss of heat $\left( -\dfrac{dQ}{dt} \right)$ is directly proportional to the difference of temperature of body and the surroundings $\left( \Delta T=\left( T-{{T}_{s}} \right) \right)$. But it is to be noted that this law only holds good for small differences in temperature.
$-\dfrac{dQ}{dt}\propto \left( T-{{T}_{s}} \right)$
$\Rightarrow -\dfrac{dQ}{dt}=k\left( T-{{T}_{s}} \right)$ ……………………….. (1)
Where,
$T$ = temperature of the body
${{T}_{s}}$ = temperature of the surroundings
Also, k is a positive constant that depends upon the area and nature of the surface of the body.
Let,
m = mass of a body
s = specific heat capacity
${{T}_{s}}$ = temperature of the surroundings
$T$ = temperature of the body
If the temperature reduces by $dT$ in time $dt$, then heat lost is given by,
$dQ=msdT$
Rate of loss of heat could be given by,
$\dfrac{dQ}{dt}=ms\dfrac{dT}{dt}$ ………………………. (2)
From (1) and (2), we have,
$\Rightarrow -ms\dfrac{dT}{dt}=k\left( T-{{T}_{s}} \right)$
$\Rightarrow \dfrac{dT}{T-{{T}_{s}}}=-\dfrac{k}{ms}dt=-Kdt$ ………………………. (3)
Where, $K=\dfrac{k}{ms}$
Let,
${{T}_{0}}$ = temperature of the body at time t=0
${{T}_{t}}$ = temperature of the body at time t
Integrating (3) on both sides,
$\int\limits_{{{T}_{0}}}^{{{T}_{t}}}{\dfrac{dT}{T-{{T}_{s}}}}=-K\int\limits_{0}^{t}{dt}$
We know that, $\int{\dfrac{1}{x}}dx=\ln x$
$\Rightarrow \left[ \ln \left( T-{{T}_{s}} \right) \right]_{{{T}_{0}}}^{{{T}_{t}}}=-K\left[ t \right]_{0}^{t}$
$\Rightarrow \ln \left( {{T}_{t}}-{{T}_{s}} \right)-\ln \left( {{T}_{0}}-{{T}_{s}} \right)=-K\left( t-0 \right)$
But,$\ln a-\ln b=\ln \dfrac{a}{b}$
$\Rightarrow \ln \left( \dfrac{{{T}_{t}}-{{T}_{s}}}{{{T}_{0}}-{{T}_{s}}} \right)=-Kt$
Taking antilog on both sides,
$\Rightarrow \dfrac{\left( {{T}_{t}}-{{T}_{s}} \right)}{\left( {{T}_{0}}-{{T}_{s}} \right)}={{e}^{-Kt}}$
$\Rightarrow {{T}_{t}}={{T}_{s}}+\left( {{T}_{0}}-{{T}_{s}} \right){{e}^{-Kt}}$…………………….. (4)
We can now substitute the given values in this equation to find the surrounding temperature.
Case 1: Temperature is decreased from $60{}^\circ C$ to $50{}^\circ C$ in first 10 minutes
$50={{T}_{s}}+\left( 60-{{T}_{s}} \right){{e}^{-10K}}$
$\Rightarrow 50={{T}_{s}}\left( 1-{{e}^{-10K}} \right)+60{{e}^{-10K}}$
Let,
$\Rightarrow {{T}_{s}}\left( 1-{{e}^{-10K}} \right)=a$…………………… (5)
$\Rightarrow {{e}^{-10K}}=b$ ………………………. (6)
$\Rightarrow 50=a+60b$ …………………….. (7)
Case 2: Temperature is further decreased from $50{}^\circ C$ to $42{}^\circ C$ in next 10 minutes
$\Rightarrow 42={{T}_{s}}+\left( 50-{{T}_{s}} \right){{e}^{-10K}}$
$\Rightarrow 42={{T}_{s}}\left( 1-{{e}^{-10K}} \right)+50{{e}^{-10K}}$
$\Rightarrow 42=a+50b$ ……………………… (8)
Subtracting (8) from (7),
$\Rightarrow 8=10b$
$\Rightarrow b=\dfrac{4}{5}$ …………… (9)
Adding (7) and (8) gives,
$\Rightarrow 92=2a+110b$
$\Rightarrow 2a+110\times \dfrac{4}{5}=92$
$\Rightarrow 2a=4$
$\Rightarrow a=2$ ………………. (10)
From (6) and (9),
$\Rightarrow b={{e}^{-10K}}=\dfrac{4}{5}$
From (5) and (10),
$\Rightarrow a={{T}_{s}}\left( 1-{{e}^{-10K}} \right)=2$
$\Rightarrow {{T}_{s}}\left( 1-\dfrac{4}{5} \right)=2$
$\Rightarrow \dfrac{{{T}_{s}}}{5}=2$
$\Rightarrow {{T}_{s}}=10{}^\circ C$
Therefore, the temperature of the surroundings is $10{}^\circ C$.
Hence, the answer to the question is option B.
Note: Though for conceptual clarity we have derived the expression for Newton’s law of cooling you shouldn’t necessarily do that. You could simply memorize the standard expression and then simply substitute the given values and hence get the answer. In case you are not able to recall the expression, you can derive it as shown above.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
Differentiate between internal fertilization and external class 12 biology CBSE
Which animal never drinks water in its entire life class 12 biology CBSE