Answer
Verified
429k+ views
Hint: In this question, we are given an exponential function and we have to find its derivative, the function involves e raised to the power -10x, so we have to differentiate \[{e^{ - 10x}}\] with respect to x. We will first differentiate the whole quantity \[{e^{ - 10x}}\] and then differentiate the quantity that is written in the power $( - 10x)$ as it is also a function of x. The result of multiplying these two differentiated functions will give the value of $\dfrac{{dy}}{{dx}}$ or $y'(x)$ . On solving the given question using the above information, we will get the correct answer.
Complete step-by-step solution:
We have to differentiate \[{e^{ - 10x}}\]
Let $y = {e^{ - 10x}}$
We know that $\dfrac{{d{e^x}}}{{dx}} = {e^x}$
So differentiating both sides of the above equation with respect to x, we get –
$\dfrac{{dy}}{{dx}} = {e^{ - 10x}}\dfrac{{d( - 10x)}}{{dx}}$
We also know that $\dfrac{{dkx}}{{dx}} = kx$ , so we get –
$\dfrac{{dy}}{{dx}} = - 10{e^{ - 10x}}$
Hence, the derivative of \[{e^{ - 10x}}\] is $ - 10{e^{ - 10x}}$ .
Note: Differentiation is represented as $\dfrac{{dy}}{{dx}}$ and is used when we have to find the instantaneous rate of change of a quantity. In the expression $\dfrac{{dy}}{{dx}}$ , $dy$ represents a very small change in quantity and $dx$ represents the small change in the quantity with respect to which the given quantity is changing.
In this question, we have to differentiate \[{e^{ - 10x}}\] , it is a function containing only one variable quantity, so we can simply start differentiating it. But we must rearrange the equation if the equation contains more than one variable quantity so that the variable with respect to which the function is differentiated is present on one side and the variable whose derivative we have to find is present on the other side.
Complete step-by-step solution:
We have to differentiate \[{e^{ - 10x}}\]
Let $y = {e^{ - 10x}}$
We know that $\dfrac{{d{e^x}}}{{dx}} = {e^x}$
So differentiating both sides of the above equation with respect to x, we get –
$\dfrac{{dy}}{{dx}} = {e^{ - 10x}}\dfrac{{d( - 10x)}}{{dx}}$
We also know that $\dfrac{{dkx}}{{dx}} = kx$ , so we get –
$\dfrac{{dy}}{{dx}} = - 10{e^{ - 10x}}$
Hence, the derivative of \[{e^{ - 10x}}\] is $ - 10{e^{ - 10x}}$ .
Note: Differentiation is represented as $\dfrac{{dy}}{{dx}}$ and is used when we have to find the instantaneous rate of change of a quantity. In the expression $\dfrac{{dy}}{{dx}}$ , $dy$ represents a very small change in quantity and $dx$ represents the small change in the quantity with respect to which the given quantity is changing.
In this question, we have to differentiate \[{e^{ - 10x}}\] , it is a function containing only one variable quantity, so we can simply start differentiating it. But we must rearrange the equation if the equation contains more than one variable quantity so that the variable with respect to which the function is differentiated is present on one side and the variable whose derivative we have to find is present on the other side.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE