
How do you evaluate $^{10}{C_3} $
Answer
452.7k+ views
Hint: In order to evaluate the above ,consider $n = 10$ and $r = 3$ and use the formula of $C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$ to find the number of combinations.
Formula used:
$C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
$p(n,r)\, = {\,^n}{P_r} = \dfrac{{n!}}{{(n - r)!}}$
Complete step by step solution:
Given $^{10}{C_3}$ ,this is of the form ${\,^n}{C_r}$ where $n = 10$ and $r = 3$.
To evaluate this we will use formula of $C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
So, Putting the value of n and r in the above formula
$
C(n,r)\, = {\,^n}{C_r} = \dfrac{{10!}}{{3!(10 - 3)!}} \\
= \dfrac{{10!}}{{3!7!}} \\
$
$10!$ is equivalent to $10 \times 9 \times 8 \times 7!$
$
= \dfrac{{10 \times 9 \times 8 \times 7!}}{{3!7!}} \\
= \dfrac{{10 \times 9 \times 8 \times {7}!}}{{3!{7}!}} \\
= \dfrac{{10 \times 9 \times 8}}{{3 \times 2}} \\
= 10 \times 3 \times 4 \\
= 120 \\
$
Therefore, value of $^{10}{C_3}$ is equal to $120$
Additional Information:
1.Factorial: The continued product of first n natural numbers is called the “n factorial “ and denoted
by $n!$.
2.Permutation: Each of the arrangements which can be made by taking some or all of number of
things are called permutations. If n and r are positive integers such that $1 \leqslant r \leqslant n$, then the number of all permutations of n distinct or different things, taken r at one time is denoted by the symbol
$p(n,r)\,or{\,^n}{P_r}$.
$p(n,r)\, = {\,^n}{P_r} = \dfrac{{n!}}{{(n - r)!}}$
3.Combinations: Each of the different selections made by taking some or all of a number of objects
irrespective of their arrangement is called a combination. The combinations number of n objects, taken r at one time is generally denoted by
$C(n,r)\,or{\,^n}{C_r}$
Thus, $C(n,r)\,or{\,^n}{C_r}$= Number of ways of selecting r objects from n objects.
$C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
Note: 1. Factorials of proper fractions or negative integers are not defined. Factorial n defined only for whole numbers.
2.Meaning of Zero factorial is senseless to define it as the product of integers from 1 to zero. So, we
define it as $0! = 1$.
3.Don’t forget to cross-check your answer at least once as it may contain calculation errors.
Formula used:
$C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
$p(n,r)\, = {\,^n}{P_r} = \dfrac{{n!}}{{(n - r)!}}$
Complete step by step solution:
Given $^{10}{C_3}$ ,this is of the form ${\,^n}{C_r}$ where $n = 10$ and $r = 3$.
To evaluate this we will use formula of $C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
So, Putting the value of n and r in the above formula
$
C(n,r)\, = {\,^n}{C_r} = \dfrac{{10!}}{{3!(10 - 3)!}} \\
= \dfrac{{10!}}{{3!7!}} \\
$
$10!$ is equivalent to $10 \times 9 \times 8 \times 7!$
$
= \dfrac{{10 \times 9 \times 8 \times 7!}}{{3!7!}} \\
= \dfrac{{10 \times 9 \times 8 \times {7}!}}{{3!{7}!}} \\
= \dfrac{{10 \times 9 \times 8}}{{3 \times 2}} \\
= 10 \times 3 \times 4 \\
= 120 \\
$
Therefore, value of $^{10}{C_3}$ is equal to $120$
Additional Information:
1.Factorial: The continued product of first n natural numbers is called the “n factorial “ and denoted
by $n!$.
2.Permutation: Each of the arrangements which can be made by taking some or all of number of
things are called permutations. If n and r are positive integers such that $1 \leqslant r \leqslant n$, then the number of all permutations of n distinct or different things, taken r at one time is denoted by the symbol
$p(n,r)\,or{\,^n}{P_r}$.
$p(n,r)\, = {\,^n}{P_r} = \dfrac{{n!}}{{(n - r)!}}$
3.Combinations: Each of the different selections made by taking some or all of a number of objects
irrespective of their arrangement is called a combination. The combinations number of n objects, taken r at one time is generally denoted by
$C(n,r)\,or{\,^n}{C_r}$
Thus, $C(n,r)\,or{\,^n}{C_r}$= Number of ways of selecting r objects from n objects.
$C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
Note: 1. Factorials of proper fractions or negative integers are not defined. Factorial n defined only for whole numbers.
2.Meaning of Zero factorial is senseless to define it as the product of integers from 1 to zero. So, we
define it as $0! = 1$.
3.Don’t forget to cross-check your answer at least once as it may contain calculation errors.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
