Answer
Verified
429.9k+ views
Hint: use the formula for permutation and substitute the values of n and r in the formula. After substituting the required values solve the factorial to get the desired answer.
Complete step by step solution:
In the above question we are required to evaluate the value of $^9{P_3}$
We know that,
$^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
On comparing the given equation with the above formula we come to the conclusion that
$n = 9$ and
$r = 3$
Now substitute the values of n and r in the formula and we reach:
$^9{P_3} = \dfrac{{9!}}{{(9 - 3)!}}$
On simplifying we get
$^9{P_3} = \dfrac{{9!}}{{(6)!}}$
Which can also be written as
$^9{P_3} = \dfrac{{9 \times 8 \times 7 \times 6!}}{{(6)!}}$
On further simplifying we get
$^9{P_3} = 9 \times 8 \times 7$
$^9{P_3} = 504$
Note:
Factorial is defined as the product of all natural numbers less than or equal to a given number.
For the natural number ‘n’, it’s factorial is denoted as n!
And $n! = n(n - 1)(n - 2)(n - 3)(n - 4)....3 \times 2 \times 1$
Remember that:
$
0! = 1 \\
1! = 1 \\
$
And
The permutation is the arrangement of objects in a definite order.
The number of permutations of n different objects taken r at a time without replacement, where $0 < r \leqslant n$, is given by:
$^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
The selection of some or all objects from a given set of different objects where the order of selection is not considered is called Combination. Therefore, the number of combinations of n different objects taken r objects out of them without replacement, $0 < r \leqslant n$, is given by:
$^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} = \dfrac{{^n{P_r}}}{{r!}}$
Remember:
If in a problem statement, you are asked for selection and their ordering, then you should use permutation.
In simple words, we can say that,
Permutation=Selecting + Ordering
If in any problem statement, you are asked only for selection then you should use a combination.
In simple words, we say that,
Combination= Selection.
Complete step by step solution:
In the above question we are required to evaluate the value of $^9{P_3}$
We know that,
$^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
On comparing the given equation with the above formula we come to the conclusion that
$n = 9$ and
$r = 3$
Now substitute the values of n and r in the formula and we reach:
$^9{P_3} = \dfrac{{9!}}{{(9 - 3)!}}$
On simplifying we get
$^9{P_3} = \dfrac{{9!}}{{(6)!}}$
Which can also be written as
$^9{P_3} = \dfrac{{9 \times 8 \times 7 \times 6!}}{{(6)!}}$
On further simplifying we get
$^9{P_3} = 9 \times 8 \times 7$
$^9{P_3} = 504$
Note:
Factorial is defined as the product of all natural numbers less than or equal to a given number.
For the natural number ‘n’, it’s factorial is denoted as n!
And $n! = n(n - 1)(n - 2)(n - 3)(n - 4)....3 \times 2 \times 1$
Remember that:
$
0! = 1 \\
1! = 1 \\
$
And
The permutation is the arrangement of objects in a definite order.
The number of permutations of n different objects taken r at a time without replacement, where $0 < r \leqslant n$, is given by:
$^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
The selection of some or all objects from a given set of different objects where the order of selection is not considered is called Combination. Therefore, the number of combinations of n different objects taken r objects out of them without replacement, $0 < r \leqslant n$, is given by:
$^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} = \dfrac{{^n{P_r}}}{{r!}}$
Remember:
If in a problem statement, you are asked for selection and their ordering, then you should use permutation.
In simple words, we can say that,
Permutation=Selecting + Ordering
If in any problem statement, you are asked only for selection then you should use a combination.
In simple words, we say that,
Combination= Selection.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers