
How do you evaluate \[\log \,0.01\]?
Answer
418.2k+ views
Hint: Logarithm of the form \[\log \,a\] has a base of the logarithm as 10. In logarithm we have several properties like \[\log \,\dfrac{m}{n}\,\,=\,\,\log m\,-\,\log n\] (where \[m\],\[n\] are positive numbers)
\[{{\log }_{a}}a\,\,=\,\,1\], \[\log 1\,=\,0\,\] etc.
Complete step by step solution:
Definition of logarithm:
Every positive real number \[N\] can be expressed in exponential form as \[{{a}^{x}}\,\,=\,\,N\]where ' \[a\]' is also a positive real number different than unity and is called the base and ' \[x\]' is called an exponent. We can write the relation \[{{a}^{x}}\,\,=\,\,N\]in logarithmic form as \[{{\log }_{a}}N\,=\,x\]. Hence \[{{a}^{x}}\,\,=\,\,N\,\,\Leftrightarrow \,\,{{\log }_{a}}N\,=\,x\].
Hence, the logarithm of a number to some base is the exponent by which the base must be raised in order to get that number.
Limitations of logarithm: \[{{\log }_{a}}N\,=\,x\] is defined only when (i)\[N\,>\,0\], (ii) \[a\,>\,0\] (iii) \[a\,\ne \,1\]
We can evaluate \[\log \,0.01\] step by step by transforming it in such a form so that we can apply the known formulae or properties of logarithm.
\[\log \,0.01\] can be written as \[\log \left( \dfrac{1}{100} \right)\].
As \[\log \,\dfrac{m}{n}\,\,=\,\,\log m\,-\,\log n\].
\[\,\Rightarrow \,\,\log \left( \dfrac{1}{100} \right)\,\,=\,\,\log 1\,-\,\log 100\,=\,0\,-\,\log {{10}^{2}}\] ……………………………………………………… (i)
also as \[\log 1\,=\,0\] and \[\log {{a}^{n}}\,=\,n\times \log a\](power rule of logarithm) equation (i) reduces to
\[\,\Rightarrow \,\,\log \left( \dfrac{1}{100} \right)\,\,=\,\,0\,\,-\,\,2\times \log (10)\,\,=\,\,0\,\,-\,\,2\times 1\]
\[\therefore \,\,\,\,\log 0.01\,\,=\,\,-2\].
Note:
> \[\log a\] has the base of the logarithm as 10 whereas \[\log a\] has the base of the logarithm as \[e\], where \[e\] is Napier’s constant. Napier’s constant is an irrational number. The approximate value of Napier’s constant is \[e\,\,=\,\,2.718\].
> For a given value of \[N\], \[{{\log }_{a}}N\] will give us a unique value.
> Logarithm of zero does not exist.
\[{{\log }_{N}}N\,=\,\,1\]
> Logarithms of negative real numbers are not defined in the system of real numbers.
\[{{\log }_{a}}a\,\,=\,\,1\], \[\log 1\,=\,0\,\] etc.
Complete step by step solution:
Definition of logarithm:
Every positive real number \[N\] can be expressed in exponential form as \[{{a}^{x}}\,\,=\,\,N\]where ' \[a\]' is also a positive real number different than unity and is called the base and ' \[x\]' is called an exponent. We can write the relation \[{{a}^{x}}\,\,=\,\,N\]in logarithmic form as \[{{\log }_{a}}N\,=\,x\]. Hence \[{{a}^{x}}\,\,=\,\,N\,\,\Leftrightarrow \,\,{{\log }_{a}}N\,=\,x\].
Hence, the logarithm of a number to some base is the exponent by which the base must be raised in order to get that number.
Limitations of logarithm: \[{{\log }_{a}}N\,=\,x\] is defined only when (i)\[N\,>\,0\], (ii) \[a\,>\,0\] (iii) \[a\,\ne \,1\]
We can evaluate \[\log \,0.01\] step by step by transforming it in such a form so that we can apply the known formulae or properties of logarithm.
\[\log \,0.01\] can be written as \[\log \left( \dfrac{1}{100} \right)\].
As \[\log \,\dfrac{m}{n}\,\,=\,\,\log m\,-\,\log n\].
\[\,\Rightarrow \,\,\log \left( \dfrac{1}{100} \right)\,\,=\,\,\log 1\,-\,\log 100\,=\,0\,-\,\log {{10}^{2}}\] ……………………………………………………… (i)
also as \[\log 1\,=\,0\] and \[\log {{a}^{n}}\,=\,n\times \log a\](power rule of logarithm) equation (i) reduces to
\[\,\Rightarrow \,\,\log \left( \dfrac{1}{100} \right)\,\,=\,\,0\,\,-\,\,2\times \log (10)\,\,=\,\,0\,\,-\,\,2\times 1\]
\[\therefore \,\,\,\,\log 0.01\,\,=\,\,-2\].
Note:
> \[\log a\] has the base of the logarithm as 10 whereas \[\log a\] has the base of the logarithm as \[e\], where \[e\] is Napier’s constant. Napier’s constant is an irrational number. The approximate value of Napier’s constant is \[e\,\,=\,\,2.718\].
> For a given value of \[N\], \[{{\log }_{a}}N\] will give us a unique value.
> Logarithm of zero does not exist.
\[{{\log }_{N}}N\,=\,\,1\]
> Logarithms of negative real numbers are not defined in the system of real numbers.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Draw an outline map of India and mark the following class 9 social science CBSE

Differentiate between the Western and the Eastern class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Distinguish between Khadar and Bhangar class 9 social science CBSE
