
How do you factor \[{x^2} - 64 = 0\] ?
Answer
553.8k+ views
Hint:This is a problem related to algebraic identities. This expression given above is of the form \[{a^2} - {b^2}\] such that 64 is the perfect square of 8. Thus on expanding this identity we will get the factors also. The factors are nothing but the values of x that satisfy the above expression. So we will first expand and then find the answer.
Complete step by step answer:
Given that,
\[{x^2} - 64 = 0\]
This can be written in the form \[{a^2} - {b^2}\]
\[ \Rightarrow {x^2} - {8^2}\]
Now we know that, \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] so we can writs above expression as
\[ \Rightarrow {x^2} - {8^2} = \left( {x + 8} \right)\left( {x - 8} \right)\]
Thus equating this to zero we get,
\[ \Rightarrow \left( {x + 8} \right)\left( {x - 8} \right) = 0\]
Thus \[ \Rightarrow \left( {x + 8} \right) = 0\] or \[\left( {x - 8} \right) = 0\]
So value of x or factors of given expression are,
\[ \Rightarrow x = - 8\] or \[x = 8\]
Thus the factors are \[x = \pm 8\].
This is our final answer.
Note: Factoring the expression is nothing but finding those values or values of variables that satisfy the given equation. If the equation is having only one degree that the power of variable is 1 then that expression has only one value fixed that satisfies the equation. Whereas if the equation has degree 2 then there are two values of that variable that satisfies the expression.
Like above putting \[8\] in the expression we get, \[ \Rightarrow {x^2} - {8^2} \Rightarrow {8^2} - {8^2} = 0\]
And then putting \[ - 8\] we get, \[ \Rightarrow {x^2} - {8^2} \Rightarrow {\left( { - 8} \right)^2} - {8^2} = 0\]
The number of factors of the given expression is equal to the degree of that expression.
Equation with degree 3 is called cubic equation.
Complete step by step answer:
Given that,
\[{x^2} - 64 = 0\]
This can be written in the form \[{a^2} - {b^2}\]
\[ \Rightarrow {x^2} - {8^2}\]
Now we know that, \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] so we can writs above expression as
\[ \Rightarrow {x^2} - {8^2} = \left( {x + 8} \right)\left( {x - 8} \right)\]
Thus equating this to zero we get,
\[ \Rightarrow \left( {x + 8} \right)\left( {x - 8} \right) = 0\]
Thus \[ \Rightarrow \left( {x + 8} \right) = 0\] or \[\left( {x - 8} \right) = 0\]
So value of x or factors of given expression are,
\[ \Rightarrow x = - 8\] or \[x = 8\]
Thus the factors are \[x = \pm 8\].
This is our final answer.
Note: Factoring the expression is nothing but finding those values or values of variables that satisfy the given equation. If the equation is having only one degree that the power of variable is 1 then that expression has only one value fixed that satisfies the equation. Whereas if the equation has degree 2 then there are two values of that variable that satisfies the expression.
Like above putting \[8\] in the expression we get, \[ \Rightarrow {x^2} - {8^2} \Rightarrow {8^2} - {8^2} = 0\]
And then putting \[ - 8\] we get, \[ \Rightarrow {x^2} - {8^2} \Rightarrow {\left( { - 8} \right)^2} - {8^2} = 0\]
The number of factors of the given expression is equal to the degree of that expression.
Equation with degree 3 is called cubic equation.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

