Answer
Verified
430.2k+ views
Hint:This is a problem related to algebraic identities. This expression given above is of the form \[{a^2} - {b^2}\] such that 64 is the perfect square of 8. Thus on expanding this identity we will get the factors also. The factors are nothing but the values of x that satisfy the above expression. So we will first expand and then find the answer.
Complete step by step answer:
Given that,
\[{x^2} - 64 = 0\]
This can be written in the form \[{a^2} - {b^2}\]
\[ \Rightarrow {x^2} - {8^2}\]
Now we know that, \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] so we can writs above expression as
\[ \Rightarrow {x^2} - {8^2} = \left( {x + 8} \right)\left( {x - 8} \right)\]
Thus equating this to zero we get,
\[ \Rightarrow \left( {x + 8} \right)\left( {x - 8} \right) = 0\]
Thus \[ \Rightarrow \left( {x + 8} \right) = 0\] or \[\left( {x - 8} \right) = 0\]
So value of x or factors of given expression are,
\[ \Rightarrow x = - 8\] or \[x = 8\]
Thus the factors are \[x = \pm 8\].
This is our final answer.
Note: Factoring the expression is nothing but finding those values or values of variables that satisfy the given equation. If the equation is having only one degree that the power of variable is 1 then that expression has only one value fixed that satisfies the equation. Whereas if the equation has degree 2 then there are two values of that variable that satisfies the expression.
Like above putting \[8\] in the expression we get, \[ \Rightarrow {x^2} - {8^2} \Rightarrow {8^2} - {8^2} = 0\]
And then putting \[ - 8\] we get, \[ \Rightarrow {x^2} - {8^2} \Rightarrow {\left( { - 8} \right)^2} - {8^2} = 0\]
The number of factors of the given expression is equal to the degree of that expression.
Equation with degree 3 is called cubic equation.
Complete step by step answer:
Given that,
\[{x^2} - 64 = 0\]
This can be written in the form \[{a^2} - {b^2}\]
\[ \Rightarrow {x^2} - {8^2}\]
Now we know that, \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] so we can writs above expression as
\[ \Rightarrow {x^2} - {8^2} = \left( {x + 8} \right)\left( {x - 8} \right)\]
Thus equating this to zero we get,
\[ \Rightarrow \left( {x + 8} \right)\left( {x - 8} \right) = 0\]
Thus \[ \Rightarrow \left( {x + 8} \right) = 0\] or \[\left( {x - 8} \right) = 0\]
So value of x or factors of given expression are,
\[ \Rightarrow x = - 8\] or \[x = 8\]
Thus the factors are \[x = \pm 8\].
This is our final answer.
Note: Factoring the expression is nothing but finding those values or values of variables that satisfy the given equation. If the equation is having only one degree that the power of variable is 1 then that expression has only one value fixed that satisfies the equation. Whereas if the equation has degree 2 then there are two values of that variable that satisfies the expression.
Like above putting \[8\] in the expression we get, \[ \Rightarrow {x^2} - {8^2} \Rightarrow {8^2} - {8^2} = 0\]
And then putting \[ - 8\] we get, \[ \Rightarrow {x^2} - {8^2} \Rightarrow {\left( { - 8} \right)^2} - {8^2} = 0\]
The number of factors of the given expression is equal to the degree of that expression.
Equation with degree 3 is called cubic equation.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers