Answer
Verified
418.2k+ views
Hint: These types of problems are pretty straight forward and are very easy to solve. For solving such problems we first need to understand the meaning of all the parameters used in the given problem equation. In the given sum, let us assume \[\left( x,y \right)\] as a point in the coordinate plane. The distance of this point from the origin is represented by \[r\] and is defined by \[r=\sqrt{{{x}^{2}}+{{y}^{2}}}\]. The angle that the line joining the point and the origin makes with the x-axis is represented by \[\theta \] and is defined by \[\tan \theta =\dfrac{y}{x}\] . Now, replacing the things we know here into the given equation, we convert it into a simpler equation in general form of x and y and then plot it on the graph paper.
Complete step by step answer:
Now, we start off with the solution to the given problem as,
We know that \[\tan \theta =\dfrac{y}{x}\] , and from this information, we can easily find out the value of \[\sin \theta \]. The value of \[\sin \theta \] will be,
\[\sin \theta =\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}\]
Now, we know that the value of \[r\] in this equation is given by,
\[r=\sqrt{{{x}^{2}}+{{y}^{2}}}\]
Now, replacing the above two formed equations in the given problem we get,
\[\begin{align}
& r=4\sin \theta \\
& \Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}}=4\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}} \\
\end{align}\]
Now, cross multiplying both the sides of the equation, we get,
\[\begin{align}
& \Rightarrow {{x}^{2}}+{{y}^{2}}=4y \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-4y=0 \\
\end{align}\]
Now, adding \[4\] on both the sides of the equation, we get,
\[\Rightarrow {{x}^{2}}+{{y}^{2}}-4y+4=4\]
Now, writing it in the form of a perfect square, we get,
\[\begin{align}
& \Rightarrow {{x}^{2}}+{{\left( y-2 \right)}^{2}}=4 \\
& \Rightarrow {{x}^{2}}+{{\left( y-2 \right)}^{2}}-4=0 \\
\end{align}\]
Plotting, it on the graph paper, we get a circle with centre \[\left( 0,2 \right)\] and radius \[2\] as the above formed equation is of the form \[{{x}^{2}}+{{y}^{2}}={{c}^{2}}\].
Note: For these types of problems, we need to remember the conversion from one form to another. The question is given in the polar form and we need to convert it into the general form which we are accustomed to understanding. After converting it into the general form we need to reorganise the terms so as to try to form the basic curves we know. If it falls under one of those categories, we can easily plot it with our knowledge of coordinate geometry, else we need to use derivatives and find the required points and slopes necessary for plotting a graph.
Complete step by step answer:
Now, we start off with the solution to the given problem as,
We know that \[\tan \theta =\dfrac{y}{x}\] , and from this information, we can easily find out the value of \[\sin \theta \]. The value of \[\sin \theta \] will be,
\[\sin \theta =\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}\]
Now, we know that the value of \[r\] in this equation is given by,
\[r=\sqrt{{{x}^{2}}+{{y}^{2}}}\]
Now, replacing the above two formed equations in the given problem we get,
\[\begin{align}
& r=4\sin \theta \\
& \Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}}=4\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}} \\
\end{align}\]
Now, cross multiplying both the sides of the equation, we get,
\[\begin{align}
& \Rightarrow {{x}^{2}}+{{y}^{2}}=4y \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-4y=0 \\
\end{align}\]
Now, adding \[4\] on both the sides of the equation, we get,
\[\Rightarrow {{x}^{2}}+{{y}^{2}}-4y+4=4\]
Now, writing it in the form of a perfect square, we get,
\[\begin{align}
& \Rightarrow {{x}^{2}}+{{\left( y-2 \right)}^{2}}=4 \\
& \Rightarrow {{x}^{2}}+{{\left( y-2 \right)}^{2}}-4=0 \\
\end{align}\]
Plotting, it on the graph paper, we get a circle with centre \[\left( 0,2 \right)\] and radius \[2\] as the above formed equation is of the form \[{{x}^{2}}+{{y}^{2}}={{c}^{2}}\].
Note: For these types of problems, we need to remember the conversion from one form to another. The question is given in the polar form and we need to convert it into the general form which we are accustomed to understanding. After converting it into the general form we need to reorganise the terms so as to try to form the basic curves we know. If it falls under one of those categories, we can easily plot it with our knowledge of coordinate geometry, else we need to use derivatives and find the required points and slopes necessary for plotting a graph.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE