How do you graph \[y = 4x - 2\]?
Answer
Verified
427.8k+ views
Hint: To solve this we need to give the values of ‘x’ and we can find the values of ‘y’. Otherwise we can find the coordinate of the given equation lying on the line of x- axis, we can find this by substituting the value of ‘y’ is equal to zero (x-intercept). Similarly we can find the coordinate of the equation lying on the line of y- axis, we can find this by substituting the value of ‘x’ equal to zero (y-intercept).
Complete step-by-step solution:
Given, \[y = 4x - 2\].
To find the x-intercept. That is the value of ‘x’ at\[y = 0\]. Substituting this in the given equation. We have,
\[0 = 4x - 2\]
\[4x = 2\]
Divide by 4 on both sides,
\[x = \dfrac{2}{4}\]
\[x = \dfrac{1}{2}\]
\[x = 0.5\]
Thus we have a coordinate of the equation which lies on the line of x-axis. The coordinate is \[(0.5,0)\].
To find the y-intercept. That is the value of ‘y’ at \[x = 0\]. Substituting this in the given equation we have,
\[y = 4(0) - 2\]
\[y = - 2\].
Thus we have a coordinate of the equation which lies on the line of y-axis. The coordinate is \[(0, - 2)\].
Thus we have the coordinates \[(0.5,0)\] and \[(0, - 2)\]. This is enough to draw the graph.
Let’s plot a graph for this coordinates,
We take scale x-axis= 1 unit = 1 units; y-axis= 1 unit = 1 units
All we did was expand the line touching the coordinates \[(0.5,0)\] and \[(0, - 2)\] by a straight line.
Using the graph we have found out other coordinates that are \[( - 1, - 6),\] and \[(1,2)\]
Note: Intercept method is the easy and more accurate method to draw the graph of any equation. If the intercepts are zero then the given equation is passing through the origin and we find the coordinate points by giving the random values like 1, 2, 3,… to ‘x’ we find the corresponding value of ‘y’. Then with the obtained coordinate point we draw the graph ‘x’ versus ‘y’ as we did in above.
Complete step-by-step solution:
Given, \[y = 4x - 2\].
To find the x-intercept. That is the value of ‘x’ at\[y = 0\]. Substituting this in the given equation. We have,
\[0 = 4x - 2\]
\[4x = 2\]
Divide by 4 on both sides,
\[x = \dfrac{2}{4}\]
\[x = \dfrac{1}{2}\]
\[x = 0.5\]
Thus we have a coordinate of the equation which lies on the line of x-axis. The coordinate is \[(0.5,0)\].
To find the y-intercept. That is the value of ‘y’ at \[x = 0\]. Substituting this in the given equation we have,
\[y = 4(0) - 2\]
\[y = - 2\].
Thus we have a coordinate of the equation which lies on the line of y-axis. The coordinate is \[(0, - 2)\].
Thus we have the coordinates \[(0.5,0)\] and \[(0, - 2)\]. This is enough to draw the graph.
Let’s plot a graph for this coordinates,
We take scale x-axis= 1 unit = 1 units; y-axis= 1 unit = 1 units
All we did was expand the line touching the coordinates \[(0.5,0)\] and \[(0, - 2)\] by a straight line.
Using the graph we have found out other coordinates that are \[( - 1, - 6),\] and \[(1,2)\]
Note: Intercept method is the easy and more accurate method to draw the graph of any equation. If the intercepts are zero then the given equation is passing through the origin and we find the coordinate points by giving the random values like 1, 2, 3,… to ‘x’ we find the corresponding value of ‘y’. Then with the obtained coordinate point we draw the graph ‘x’ versus ‘y’ as we did in above.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE