Answer
Verified
430.2k+ views
Hint: We can solve the question by using the Distributive Property. This property tells us that if a mathematical expression is in the form of \[(a + b) \cdot c\], then multiplying each of the addends from the equation separately gives us the same answer as multiplying the sum of the numbers (within the bracket) by another number (outside the bracket).
Formula used: \[(a + b) \cdot c = ac + bc\]
Complete step-by-step solution:
The given mathematical expression is:
\[(9m + 10) \cdot 2\]
Distributive property says that multiplying each of the addends from the equation separately gives us the same answer as multiplying the sum of the numbers (within the bracket) by another number (outside the bracket). The formula for distributive property is:
\[(a + b) \cdot c = ac + bc\]
When we apply this property in our mathematical expression, then we get:
\[ = 9m \cdot 2 + 10 \cdot 2\]
Here, the brackets are opened and \[2\]is multiplied to both the numbers that were in the bracket.
Now, we will multiply both the term and get:
\[ = 18m + 20\]
\[ \Rightarrow (9m + 10) \cdot 2 = 18m + 20\]
This is our final answer. The simplified version of \[(9m + 10) \cdot 2\]is \[18m + 20\].
Note: Distributive property is also called distributive law of division and multiplication. We should make sure that we multiply the outside number with all the terms that are in the bracket. We usually first add the numbers inside the bracket and then multiply it with the outside term. But we should not do that. We should multiply each term that is inside the bracket with the outside number and then add all the terms. This is usually done when the two numbers inside the bracket cannot be added because they are not like terms.
Formula used: \[(a + b) \cdot c = ac + bc\]
Complete step-by-step solution:
The given mathematical expression is:
\[(9m + 10) \cdot 2\]
Distributive property says that multiplying each of the addends from the equation separately gives us the same answer as multiplying the sum of the numbers (within the bracket) by another number (outside the bracket). The formula for distributive property is:
\[(a + b) \cdot c = ac + bc\]
When we apply this property in our mathematical expression, then we get:
\[ = 9m \cdot 2 + 10 \cdot 2\]
Here, the brackets are opened and \[2\]is multiplied to both the numbers that were in the bracket.
Now, we will multiply both the term and get:
\[ = 18m + 20\]
\[ \Rightarrow (9m + 10) \cdot 2 = 18m + 20\]
This is our final answer. The simplified version of \[(9m + 10) \cdot 2\]is \[18m + 20\].
Note: Distributive property is also called distributive law of division and multiplication. We should make sure that we multiply the outside number with all the terms that are in the bracket. We usually first add the numbers inside the bracket and then multiply it with the outside term. But we should not do that. We should multiply each term that is inside the bracket with the outside number and then add all the terms. This is usually done when the two numbers inside the bracket cannot be added because they are not like terms.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE