Answer
Verified
429k+ views
Hint: In this question, we used continued fraction expansion. And fraction is that in mathematics, a fraction is an expression obtained through an iterative process of representing verity because the sum of its integer part and therefore the reciprocal of another number, then writing this other number because the sum of its integer part and another reciprocal, and so on.
\[
{a_0} + \dfrac{1}{{{a_1} + \dfrac{1}{{{a_2} + \dfrac{1}{{}}}}}} \\
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;. \\
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;. \\
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;. + \dfrac{1}{{{a_n}}} \\
\]
It is a finite continued fraction, where n is a non-negative integer, \[{a_0}\] is an integer, and \[{a_i}\] is a positive integer, for \[i = 1,.............n\].
It is generally assumed that the numerator of the entire fraction is \[1\]. If the arbitrary values and functions are utilized in place of one or more of the numerator or the integer in the denominators, the resulting expression may be a generalized continued fraction.
Complete step by step answer:
The number is\[504\].
The factor of \[504 = 2 \times 2 \times 2 \times 3 \times 3 \times 7\] has no perfect square factors, so \[\sqrt {504} \] can’t be simplified.
Then,
It is an irrational approximation; I will find a continued fraction expansion for \[\sqrt {504} \] then truncate it.
To find the simple continued fraction expansion of \[\sqrt n \], we use the following algorithm.
\[
{m_0} = 0 \\
{d_0} = 1 \\
{a_0} = \sqrt n \\
{m_{i + 1}} = {d_i}{a_i} - {m_i} \\
{d_{i + 1}} = \dfrac{{n - {m^2}_{i + 1}}}{{{d_i}}} \\
{a_{i + 1}} = \dfrac{{{a_0} + {m_{i + 1}}}}{{{d_{i + 1}}}} \\
\]
This algorithm stops when \[{a_i} = 2{a_0}\], making the end of the repeating part of the continued fraction.
Then, the continued fraction expansion is.
\[\left[ {{a_0};\;{a_1},\;{a_2},\;{a_3}........} \right] = {a_0} + \dfrac{1}{{{a_1} + \dfrac{1}{{{a_2} + \dfrac{1}{{{a_3} + ........}}}}}}\]
Next, in the question the value of \[n = 504\] and \[\left[ {\sqrt n } \right] = 22\], since \[{22^2} = 484 < 504 < 529 = {23^2}\].
So, by using the continued fraction expansion:
\[
{m_0} = 0 \\
{d_0} = 1 \\
{a_0} = \left[ {\sqrt {504} } \right] = 22 \\
{m_1} = {d_0}{a_0} - {m_0} = 22 \\
\Rightarrow {d_1} = \dfrac{{n - {m_1}^2}}{{{d_0}}} = \dfrac{{504 - {{22}^2}}}{1} = 20 \\
\]
\[
\Rightarrow {a_1} = \left[ {\dfrac{{{a_0} + {m_1}}}{{{d_1}}}} \right] = \left[ {\dfrac{{22 + 22}}{{20}}} \right] = 2 \\
{m_2} = {d_1}{a_1} - {m_1} = 40 - 22 = 18 \\
\]
\[
\Rightarrow {d_2} = \dfrac{{n - {m_2}^2}}{{{d_1}}} = \dfrac{{504 - 324}}{{20}} = 9 \\
{a_2} = \left[ {\dfrac{{{a_0} + {m_2}}}{{{d_2}}}} \right] = \left[ {\dfrac{{22 + 18}}{9}} \right] = 4 \\
{m_3} = {d_2}{a_2} - {m_2} = 36 - 18 = 18 \\
\]
\[
\Rightarrow {d_3} = \dfrac{{n - {m_3}^2}}{{{d_2}}} = \dfrac{{504 - 324}}{9} = 20 \\
{a_3} = \left[ {\dfrac{{{a_0} + {m_3}}}{{{d_3}}}} \right] = \left[ {\dfrac{{22 + 18}}{{20}}} \right] = 2 \\
\]
\[
\Rightarrow {m_4} = {d_3}{a_3} - {m_3} = 40 - 18 = 22 \\
{d_4} = \dfrac{{n - {m_4}^2}}{{{d_3}}} = \dfrac{{504 - 484}}{{20}} = 1 \\
{a_4} = \left[ {\dfrac{{{a_0} + {m_4}}}{{{d_4}}}} \right] = \left[ {\dfrac{{22 + 22}}{1}} \right] = 44 \\
\]
Having reached a value \[44\] which is twice the primary value \[22\], this is often the top of the repeating pattern of the fraction, and that we have:
\[\sqrt {504} = \left[ {22;\;2,\;4,\;2,\;44} \right]\]
The first economical approximation for \[\sqrt {504} \] is then:
\[
\sqrt {504} \approx \left[ {22;\;2,\;4,\;2} \right] = 22 + \dfrac{1}{{2 + \dfrac{1}{{4 + \dfrac{1}{2}}}}} \\
= \dfrac{{449}}{{20}} = 22.45 \\
\]
Then, we again used the repeated value.
\[
\sqrt {504} = \left[ {22;2,4,2,44,2,4,2} \right] \\
\approx 22.44994432... \\
\]
Therefore the closer value of \[\sqrt {504} \] is:
\[\therefore \sqrt {504} \approx 22.44994432...\]
Note:
As we know continued fraction is just another way of writing fraction. They have some interesting connections with a jigsaw puzzle problem about splitting a rectangle into squares etc. it is the simple method for finding the square root of a number which has no square factor.
\[
{a_0} + \dfrac{1}{{{a_1} + \dfrac{1}{{{a_2} + \dfrac{1}{{}}}}}} \\
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;. \\
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;. \\
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;. + \dfrac{1}{{{a_n}}} \\
\]
It is a finite continued fraction, where n is a non-negative integer, \[{a_0}\] is an integer, and \[{a_i}\] is a positive integer, for \[i = 1,.............n\].
It is generally assumed that the numerator of the entire fraction is \[1\]. If the arbitrary values and functions are utilized in place of one or more of the numerator or the integer in the denominators, the resulting expression may be a generalized continued fraction.
Complete step by step answer:
The number is\[504\].
The factor of \[504 = 2 \times 2 \times 2 \times 3 \times 3 \times 7\] has no perfect square factors, so \[\sqrt {504} \] can’t be simplified.
Then,
It is an irrational approximation; I will find a continued fraction expansion for \[\sqrt {504} \] then truncate it.
To find the simple continued fraction expansion of \[\sqrt n \], we use the following algorithm.
\[
{m_0} = 0 \\
{d_0} = 1 \\
{a_0} = \sqrt n \\
{m_{i + 1}} = {d_i}{a_i} - {m_i} \\
{d_{i + 1}} = \dfrac{{n - {m^2}_{i + 1}}}{{{d_i}}} \\
{a_{i + 1}} = \dfrac{{{a_0} + {m_{i + 1}}}}{{{d_{i + 1}}}} \\
\]
This algorithm stops when \[{a_i} = 2{a_0}\], making the end of the repeating part of the continued fraction.
Then, the continued fraction expansion is.
\[\left[ {{a_0};\;{a_1},\;{a_2},\;{a_3}........} \right] = {a_0} + \dfrac{1}{{{a_1} + \dfrac{1}{{{a_2} + \dfrac{1}{{{a_3} + ........}}}}}}\]
Next, in the question the value of \[n = 504\] and \[\left[ {\sqrt n } \right] = 22\], since \[{22^2} = 484 < 504 < 529 = {23^2}\].
So, by using the continued fraction expansion:
\[
{m_0} = 0 \\
{d_0} = 1 \\
{a_0} = \left[ {\sqrt {504} } \right] = 22 \\
{m_1} = {d_0}{a_0} - {m_0} = 22 \\
\Rightarrow {d_1} = \dfrac{{n - {m_1}^2}}{{{d_0}}} = \dfrac{{504 - {{22}^2}}}{1} = 20 \\
\]
\[
\Rightarrow {a_1} = \left[ {\dfrac{{{a_0} + {m_1}}}{{{d_1}}}} \right] = \left[ {\dfrac{{22 + 22}}{{20}}} \right] = 2 \\
{m_2} = {d_1}{a_1} - {m_1} = 40 - 22 = 18 \\
\]
\[
\Rightarrow {d_2} = \dfrac{{n - {m_2}^2}}{{{d_1}}} = \dfrac{{504 - 324}}{{20}} = 9 \\
{a_2} = \left[ {\dfrac{{{a_0} + {m_2}}}{{{d_2}}}} \right] = \left[ {\dfrac{{22 + 18}}{9}} \right] = 4 \\
{m_3} = {d_2}{a_2} - {m_2} = 36 - 18 = 18 \\
\]
\[
\Rightarrow {d_3} = \dfrac{{n - {m_3}^2}}{{{d_2}}} = \dfrac{{504 - 324}}{9} = 20 \\
{a_3} = \left[ {\dfrac{{{a_0} + {m_3}}}{{{d_3}}}} \right] = \left[ {\dfrac{{22 + 18}}{{20}}} \right] = 2 \\
\]
\[
\Rightarrow {m_4} = {d_3}{a_3} - {m_3} = 40 - 18 = 22 \\
{d_4} = \dfrac{{n - {m_4}^2}}{{{d_3}}} = \dfrac{{504 - 484}}{{20}} = 1 \\
{a_4} = \left[ {\dfrac{{{a_0} + {m_4}}}{{{d_4}}}} \right] = \left[ {\dfrac{{22 + 22}}{1}} \right] = 44 \\
\]
Having reached a value \[44\] which is twice the primary value \[22\], this is often the top of the repeating pattern of the fraction, and that we have:
\[\sqrt {504} = \left[ {22;\;2,\;4,\;2,\;44} \right]\]
The first economical approximation for \[\sqrt {504} \] is then:
\[
\sqrt {504} \approx \left[ {22;\;2,\;4,\;2} \right] = 22 + \dfrac{1}{{2 + \dfrac{1}{{4 + \dfrac{1}{2}}}}} \\
= \dfrac{{449}}{{20}} = 22.45 \\
\]
Then, we again used the repeated value.
\[
\sqrt {504} = \left[ {22;2,4,2,44,2,4,2} \right] \\
\approx 22.44994432... \\
\]
Therefore the closer value of \[\sqrt {504} \] is:
\[\therefore \sqrt {504} \approx 22.44994432...\]
Note:
As we know continued fraction is just another way of writing fraction. They have some interesting connections with a jigsaw puzzle problem about splitting a rectangle into squares etc. it is the simple method for finding the square root of a number which has no square factor.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE