Answer
Verified
429.6k+ views
Hint: To simplify the given expression we will multiply the term \[(x - y)\] three times in an algebraic mathematical process. On doing calculations we get the required answer.
Formula used: Here we will use the following indices formula:
\[{a^{m + n}} = {a^m}{a^n}\]
Complete Step by Step Solution:
We have to simplify \[{(x - y)^3}\] in a formation of addition or subtraction with variables.
Now, the term \[(x - y)\] is up to the power of \[3\].
So, we can rewrite the expression as: \[{(x - y)^{1 + 1 + 1}}\].
Now, we can use the above indices formula.
As the expression given is \[{(x - y)^3}\], it is clearly visible that we can multiply \[(x - y)\] three times to achieve the final expression.
So, we can rewrite the expression as following:
\[ \Rightarrow {(x - y)^3} = (x - y) \times (x - y) \times (x - y).\]
So, we will multiply first two \[(x - y)\]’s then the result of it will multiply by another \[(x - y)\] to get the final answer.
Therefore, the multiplication of \[(x - y) \times (x - y)\] is as following:
\[ \Rightarrow (x - y) \times (x - y) = (x - y) \times x - (x - y) \times y\].
So, after the multiplication of these terms, we get the following expression:
\[ \Rightarrow ({x^2} - xy) - (xy - {y^2})\].
Now, if we take the brackets off from the above expression, we get the following expression:
\[ \Rightarrow {x^2} - xy - xy + {y^2}\].
Now, if we arrange the middle terms and other terms accordingly, we get the following expression:
\[ \Rightarrow {x^2} - 2xy + {y^2}\].
So, we can state that :
\[ \Rightarrow {(x - y)^2} = (x - y) \times (x - y)\]
Therefore, \[{(x - y)^2} = {x^2} - 2xy + {y^2}\].
Now, to get the final value of the given expression\[{(x - y)^3}\], we have to multiply \[{(x - y)^2}\] by \[(x - y)\]
Therefore, we can write the following expression:
\[ \Rightarrow {(x - y)^3} = {(x - y)^2} \times (x - y)\].
So, we can rewrite it as following:
\[ \Rightarrow {(x - y)^3} = (x - y) \times ({x^2} - 2xy + {y^2})\].
So, if we multiply the above terms and split up, we get:
\[ \Rightarrow ({x^2} - 2xy + {y^2}) \times x - ({x^2} - 2xy + {y^2}) \times y\].
Now, if we multiply it further, we get:
\[ \Rightarrow ({x^2} \times x - 2xy \times x + {y^2} \times x) - ({x^2} \times y - 2xy \times y + {y^2} \times y)\].
Now, by doing the further simplification, we get:
\[ \Rightarrow ({x^3} - 2{x^2}y + x{y^2}) - ({x^2}y - 2x{y^2} + {y^3})\].
Now, if we take the brackets off, we get:
\[ \Rightarrow {x^3} - 2{x^2}y + x{y^2} - {x^2}y + 2x{y^2} - {y^3}\].
Now, add or subtract the terms having same degrees, we get:
\[ \Rightarrow {x^3} - 3{x^2}y + 3x{y^2} - {y^3}\].
We can rearrange the above statement in following way:
\[ \Rightarrow {x^3} - {y^3} - 3xy(x - y)\].
\[\therefore \]The answer of the question is \[{x^3} - {y^3} - 3xy(x - y)\].
Note: Points to remember:
If the power of any expression or term is \[n\], where \[n\] is any natural number, then the expression shall multiply \[n\] numbers of times.
Always expand each term in the bracket by all the other terms in the other brackets, but never multiply two or more terms in the same bracket.
Formula used: Here we will use the following indices formula:
\[{a^{m + n}} = {a^m}{a^n}\]
Complete Step by Step Solution:
We have to simplify \[{(x - y)^3}\] in a formation of addition or subtraction with variables.
Now, the term \[(x - y)\] is up to the power of \[3\].
So, we can rewrite the expression as: \[{(x - y)^{1 + 1 + 1}}\].
Now, we can use the above indices formula.
As the expression given is \[{(x - y)^3}\], it is clearly visible that we can multiply \[(x - y)\] three times to achieve the final expression.
So, we can rewrite the expression as following:
\[ \Rightarrow {(x - y)^3} = (x - y) \times (x - y) \times (x - y).\]
So, we will multiply first two \[(x - y)\]’s then the result of it will multiply by another \[(x - y)\] to get the final answer.
Therefore, the multiplication of \[(x - y) \times (x - y)\] is as following:
\[ \Rightarrow (x - y) \times (x - y) = (x - y) \times x - (x - y) \times y\].
So, after the multiplication of these terms, we get the following expression:
\[ \Rightarrow ({x^2} - xy) - (xy - {y^2})\].
Now, if we take the brackets off from the above expression, we get the following expression:
\[ \Rightarrow {x^2} - xy - xy + {y^2}\].
Now, if we arrange the middle terms and other terms accordingly, we get the following expression:
\[ \Rightarrow {x^2} - 2xy + {y^2}\].
So, we can state that :
\[ \Rightarrow {(x - y)^2} = (x - y) \times (x - y)\]
Therefore, \[{(x - y)^2} = {x^2} - 2xy + {y^2}\].
Now, to get the final value of the given expression\[{(x - y)^3}\], we have to multiply \[{(x - y)^2}\] by \[(x - y)\]
Therefore, we can write the following expression:
\[ \Rightarrow {(x - y)^3} = {(x - y)^2} \times (x - y)\].
So, we can rewrite it as following:
\[ \Rightarrow {(x - y)^3} = (x - y) \times ({x^2} - 2xy + {y^2})\].
So, if we multiply the above terms and split up, we get:
\[ \Rightarrow ({x^2} - 2xy + {y^2}) \times x - ({x^2} - 2xy + {y^2}) \times y\].
Now, if we multiply it further, we get:
\[ \Rightarrow ({x^2} \times x - 2xy \times x + {y^2} \times x) - ({x^2} \times y - 2xy \times y + {y^2} \times y)\].
Now, by doing the further simplification, we get:
\[ \Rightarrow ({x^3} - 2{x^2}y + x{y^2}) - ({x^2}y - 2x{y^2} + {y^3})\].
Now, if we take the brackets off, we get:
\[ \Rightarrow {x^3} - 2{x^2}y + x{y^2} - {x^2}y + 2x{y^2} - {y^3}\].
Now, add or subtract the terms having same degrees, we get:
\[ \Rightarrow {x^3} - 3{x^2}y + 3x{y^2} - {y^3}\].
We can rearrange the above statement in following way:
\[ \Rightarrow {x^3} - {y^3} - 3xy(x - y)\].
\[\therefore \]The answer of the question is \[{x^3} - {y^3} - 3xy(x - y)\].
Note: Points to remember:
If the power of any expression or term is \[n\], where \[n\] is any natural number, then the expression shall multiply \[n\] numbers of times.
Always expand each term in the bracket by all the other terms in the other brackets, but never multiply two or more terms in the same bracket.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE